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a b s t r a c t

An elastohydrodynamic numerical simulation is conducted for one-dimensional fixed slider plane

bearings. The numerical model takes into account the piezoviscous effect of the lubricant and elastic

deformation of the bounding surfaces to solve the one-dimensional Reynolds equation. It is found that a

small elastic deformation of less than 100 nm plays an important role in load capacity in thin film

hydrodynamic lubrication. As the film thickness decreases, a flat film shape appears from the leading

side of the contact area. The expansion of the flat film thickness over the contact area leads to

considerably lower load capacity.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The pressure produced in a lubricant film is transmitted to the
bounding surfaces, resulting in elastic deformation of the bounding
surfaces. The elastic deformation can significantly change the
geometrical shape between the bounding surfaces. It is apparent
that in non-conformal contact where the applied load is supported
the influence of the elastic deformation is significant because
the fluid pressure increases up to several gigapascals. Conversely,
it has been believed that in conformal contact, such as in journal
bearings and thrust bearings, the elastic deformation can be
ignored under low load because the fluid pressure is insufficient
to cause large deformations of the surfaces. However, as the film
becomes ever thinner it is possible that the elastic deformation
becomes comparable with the film thickness to alter the film
thickness distribution.

In the present study, an elastohydrodynamic (EHD) numerical
simulation is conducted to investigate the influence of elastic
deformation on conformal contacts. The model employed in the
present study is a one-dimensional fixed slider plane bearing. The
numerical analysis takes into account the piezoviscous effect of
the lubricant and the elastic deformation of the bounding surfaces
in solving the one-dimensional Reynolds equation. Numerical
solutions for the elastohydrodynamic model are compared with
those for an isoviscous rigid model.

2. Background

The importance of elastic deformation of the bounding sur-
faces was recognized during the development of the hydrody-
namic lubrication theory for non-conformal contact such as that
found in gears, rolling contact bearings, cams, and tappets. Martin
[1] indicated that the film thickness predicted on the assumption
of an isoviscous fluid and rigid surfaces for a line contact was too
thin to explain the safe operation of gear teeth without any
damage. Grubin [2] assumed that a flat film was formed in the
contact area because the surfaces were elastically deformed by
the fluid pressure of several gigapascals. He simply focused on the
flow at the inlet zone, taking into consideration the piezoviscous
effect of the lubricant. The film thickness equation suggested by
Grubin [2] predicts the formation of fluid films of micrometer
order, which is reasonable for gear contact conditions. Dowson
and Higginson [3,4] numerically solved the Reynolds equation
incorporating the elastic deformation and piezoviscous effect. The
film thickness distribution obtained by Dowson and Higginson [3]
had a flat shape in most of the contact area that was assumed by
Grubin’s model [2] and a constriction shape at the outlet.

As Grubin [2] and Dowson and Higginson [3] showed, the
piezoviscous effect and elastic deformation are recognized as
important factors in the EHD condition. Johnson [5] showed that
in terms of both effects the hydrodynamic lubrication condition
can be divided into four regimes as follows: isoviscous and rigid
(IR), piezoviscous and rigid (PR), isoviscous and elastic (IE), and
piezoviscous and elastic (PE).

For the PE regime, Grubin [2] and Dowson and Higginson [3,4]
obtained numerical solutions. In the IE regime, the fluid pressure
may be insufficient to change the viscosity of the fluid but can be
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enough to significantly deform the surfaces. The IE regime is
found in contact between soft materials such as rubbers [6] and
synovial joints [7]. In the IR regime, the pressure rise in the film is
insufficient to cause the piezoviscous effect and elastic deforma-
tion as Martin [1] assumed for his solution. The hydrodynamic
lubrication theory in the IR regime has been established in the
literature [1,8–10].

In conformal contacts such as those operated in journal
bearings and thrust bearing, the pressure generated in the film
is lower than that in operation under the EHD condition but is
enough to cause elastic deformation under high load. In the case
of fixed slider bearings, the assumption of semi-infinite elastic
bodies is reasonably applied in calculating the elastic deformation
[11–16]. In the case of actual machine elements, a shell model
[17–19] for a journal bearing and a beam model [20] for a pivoted
bearing have also been used, because their surface deformations
cannot be predicted on the assumption of semi-infinite bodies.

When the sliding speed is high, heat is generated in the film
because of the viscous dissipation and is transferred to the
surfaces. As a result, thermal expansion of the surfaces also
occurs, which is sometimes of the same order as the elastic
deformation [21–29]. The influence of thermal expansion
becomes more pronounced than that of elastic deformation with
increasing bearing size [21,22]. The thermal expansion and elastic
deformation play important roles in pressure generation in tilting
pad bearings under high load [23]. In particular, for parallel thrust
bearings, Cameron [24] and Robinson and Cameron [25–27]
suggested that a tapered surface because of heat expansion
played a dominant role in pressure generation to support the
applied load. Additionally, Baudry et al. [28] suggested that the
supporting method of the pad influenced its distortion. Bennet
and Ettles [29] suggested that a cantilever thrust bearing can
form a wedge in the leading side of the pad by utilizing elastic
deformation of the pad.

In the above studies, the focus was on the magnitude of the
large elastic deformation and thermal distortion under high load
and sliding. When the magnitude of the elastic deformation is
small, the influence of the elastic deformation can be ignored.

However, as the film thickness decreases, the magnitude of the
elastic deformation becomes comparable with the film thickness
even under low load, resulting in a change in film profile. To date,
only a few researches [30–34] have dealt with small elastic
deformations in thin film lubrication. Carl [30] described how
elastic deformation cannot be ignored at a nominal pressure of
about 7 MPa. Hemingway [31] stated that elastic deformation
distribution depended on the location of the support ring for the
pad and was responsible for producing pressure in a circular pad
even under a nominal pressure of 2 MPa, as Baudry et al. [28] had
shown in the high-load case. Nakamura et al. [32] investigated the
influence of a small elastic deformation on hydrodynamic pres-
sure generation in a parallel slide-way with a fluid film thickness
of about 1.3 mm. They showed that the hydrodynamic pressure,
which was built at the inlet zone, deformed the surfaces
to significantly change the pressure profile. Yagi et al. [33]
observed film thickness during the passage of micropits through
a flat–flat contact in which a film thickness of about 200 nm was
formed. They showed that even under a low nominal pressure of
0.2 MPa, lubricant was extracted from the leading edge of the
micropits to deform the surfaces and cavitation occurred from the
trailing edge of the micropits as the micropits entered the contact
area. Better understanding of thin film lubrication has been
anticipated.

3. Governing equations

Fig. 1 presents the schematic diagram of the fixed slider plane
bearing in the present study. The contact area comprises a flat
moving compliant surface with speed u and a stationary inclined
compliant pad of width l. The direction of motion is from left to
right. Both surfaces are perfectly smooth. The coordinate x is
taken along the sliding direction with the origin located at the
inlet. The initial maximum film thickness h1 is located at the inlet
(x¼0) and initial minimum film thickness h0 is located at the
outlet (x¼ l). The lubricant flows only in the direction of the
moving surface. The one-dimensional Reynolds equation is

Nomenclature

E1 elastic modulus of moving surface (Pa)
E2 elastic modulus of stationary surface (Pa)
E0 equivalent elastic modulus of moving surface (Pa)
F dimensionless frictional force F¼ fh0/(Z0lu)
G bearing number G¼Zu/(w/l)
H dimensionless film thickness H¼h/h0

K convergence ratio K¼(h1�h0)/h0

P dimensionless pressure P¼h0
2p/(6Z0lu)

Q dimensionless mass flow rate Q¼q/(r0h0u)
Qc dimensionless Couette mass flow rate Qc¼qc/(r0h0u)
Qq dimensionless Poiseuille mass flow rate Qp¼qp/

(r0h0u)
S dimensionless coordinate in direction of surface

motion S¼s/l
X dimensionless coordinate in direction of surface

motion X¼x/l
W dimensionless load W¼h0

2w/(6Z0l2u)
f frictional force (N)
h film thickness (m)
h0 minimum film thickness (m)
l width of pad (m)
p pressure of fluid film (Pa)

q mass flow rate q¼qcþqq (kg/(ms))
qc Couette mass flow rate (kg/(ms))
qq Poiseuille mass flow rate (kg/(ms))
s coordinate in direction of surface motion (m)
u sliding speed of moving surface (m/s)
x coordinate in direction of surface motion (m)
w load (N/m)
a pressure–viscosity coefficient (Pa�1)
d elastic deformation of moving surface d¼d0�dc (m)
d0 elastic deformation of moving surface (m)
dc elastic deformation of moving surface at x¼N (m)
d elastic deformation of moving surface (m)
r0 density at p¼0 (kg/m3)
r density (kg/m3)
r :dimensionless density
s dimensionless parameter s¼24Z0l2u/(pE0h0

3)
Z0 viscosity at p¼0 (Pa s)
Z viscosity (Pa s)
Z :dimensionless viscosity
m friction coefficient
mn dimensionless friction coefficient, mn

¼ (l/h0)m
n1 Poisson’s ratio of moving surface
n2 Poisson’s ratio of stationary surface
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