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When analyzing the randomized controlled trial, we may employ various statistical methods
to adjust for baseline measures. Depending on the method chosen to adjust for baseline
measures, inferential results can vary. We investigate the Type 1 error and statistical power of
tests comparing treatment outcomes based on parametric and nonparametic methods. We
also explore the increasing levels of correlation between baseline and changes from the
baseline, with or without underlying normality. These methods are illustrated and compared
via simulations.
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1. Introduction

For randomized controlled trials, inferential resultsmay vary
depending on whether or not an individual subject's baseline
data are adjusted for, as well as the method chosen to adjust.
Either the post-treatment value or change from baseline
may be analyzed to account for the effect of the baseline
measures. Alternatively, the percent change from baseline, a
scale invariant method can also be used. It is a measure that
is easy to interpret although its distribution is complicated,
especially when baseline and post-baseline measures are
correlated.

Lord's paradox states that the relationship between a
continuous outcome and a categorical exposuremaybe reversed

when an additional continuous covariate (e.g., baseline mea-
sures) is introduced [1]. Thus, appropriate inferential procedures
must be employed to adjust for baseline measures. The analysis
of covariance (ANCOVA) approach remains the most popular
tool in practice even with a set of stringent assumptions in-
cluding linearity, parallelism, homoscedasticity, and normality.

Previously, Vickers [2] has compared several parametric
t-test and ANCOVA basedmethods in a large sample setting. He
recommended the use of ANCOVA which had the greatest
power in the case of normally-distributed data, when baseline
and post-baseline data are correlated. We aim to extend his
comparisons by incorporating the strength of correlation and
distributional assumptions.

The remainder of this manuscript is organized as follows. In
Section 2, we review commonly-used nonparametric methods
and parametric univariate methods to compare change scores
and percent change from baseline. We also compare different
multivariate regression methods to adjust for the baseline. In
Section 3, we present Monte-Carlo simulation studies that
investigated Type 1 error and statistical power performance. In
Section 4, we apply these methods to two published examples
containing laboratory assay data and dental caries data. Finally,
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Section 5 presents conclusions and discussion based on this
research.

2. Univariate and multivariate adjustment methods

2.1. Notations

Let the i-th bivariate measurements under each of treat-
ment groups k(k = 1,…,K) have a bivariate joint distribution
function, Hk(,).

Xki;Ykið Þ � i:i:d:Hk x; yð Þ; i ¼ 1;…;nk; ð1Þ

with baseline variable X and post-baseline variable Y, respec-
tively. The total sample size across all k treatment groups is

N ¼ ∑
K

i¼1
nk.

The post-baseline scores are denoted by Yki. The change
from the baseline is Dki = Yki − Xki. The percent change from
the baseline, (Dki/Xki) × 100% [3], is recommended for label
claim purposes based on patient-reported outcomes [4]. The
latter may be easier to interpret since the percent change
score is a dimensionless measure.

2.2. Univariate methods

The commonly-used univariate nonparametric method is
either the Wilcoxon's rank-sum test (for two samples) or
Kruskal–Wallis test (for more than two samples). Alterna-
tively, a parametric method, the two-sample t-test or the
one-way Analysis of Variance (ANOVA) may be conducted. It
is assumed here that the reader is familiar with the methods
being investigated and thus they are not described in detail.

2.3. Multivariate methods

2.3.1. Parametric ANCOVA
The ANCOVA is a commonly-used multivariable regres-

sion method on a set of baseline covariates, which may also
be conducted to adjust the baseline values. There are five
assumptions for conducting the ANCOVA analysis, by expanding
on those listed in Rutherford [5]: (1) normality of residuals;
(2) homogeneity of variances; (3) homogeneity of regres-
sion slopes; (4) linearity of dependent and covariates; (5)
independence of error terms.

It is debatable howmuch deviation from normality of the
residuals permitted for ANCOVA to work well. For example,
Rutherford [5] and Wilcox [6] have noted that departure
from the normality can impact statistical power. In the
literature, however, ANOVA, as well as ANCOVA, is robust
despite such a departure. Recent discussions on alternative
modern robust methods can be found in Erceg-Hurn [7]
concerning the consequences due to the departures from
normality.

2.3.2. Nonparametric Quade's ANCOVA method
Alternatively, Quade's ANCOVA is conducted by ranking the

data marginally across all treatment groups while disregarding
the treatment assignments [8–10]. Marginal ranks are denoted

as R(X) and R(Y), each by pooling across all treatment groups k.
These ranks take on values from 1 to N. In case of ties, the
average ranks between the ties are used. These two sets of
rankings are then corrected by subtracting the expected rank,
E(R) = (N + 1) / 2, from each set of rankings.

A linear regression of the adjusted ranks of {R(Y) − R(R)}
is performed for all data to obtain the residuals. A one-way
ANOVA is then performed on these residuals. The p-value is
based on an F-distribution with (k − 1) and (N − k) degrees
of freedom.

2.3.3. Nonparametric robust regression method
For non-normal data, either the Huber type of M-estimator

via the R (http://www.r-project.org) package ‘MASS’ or Cauchy
types in SAS (http://www.sas.com) via Proc Robustreg may be
adopted [11–13].

The M-estimator minimizes the sum of a function of the
residuals ri of Yi rather than the residual squares as in the
least-squares method. The effect due to outliers is reduced
once we replace the squared residuals ri

2with the following
objective function for minimization:

min
XN

i¼1
ρ rið Þ; ð2Þ

where ρ is a symmetric, positive-definite function with a
unique minimum at zero, and is chosen to be non-increasing.

The first derivative is the influence function, i.e.,

ψ yð Þ ¼ dρ yð Þ
dy

: ð3Þ

The weight function is given by:

w yð Þ ¼ yð Þ
y

: ð4Þ

The system of equations may be solved if the following
iterated reweighted least-squares method is used:

min
XN

i¼1
w ri

l−1ð Þ� �
r2i ; ð5Þ

where (l − 1) indicates the previous iteration before l. The
weight w(ri(l − 1)) is computed during each of the iterations
before the next iteration until convergence.

For the M-estimator of the Huber type,

ρ yð Þ ¼
y2

2
; if yj j≤c;

c yj j− c
2

� �
;otherwise:

8><
>: ð6Þ

ψ yð Þ ¼ y; if yj j≤c;
c � sgn yð Þ;otherwise:

�
ð7Þ

w yð Þ ¼
1; if yj j≤c;

c
yj j ;otherwise:

8<
: ð8Þ

226 M.O. Carlsson et al. / Contemporary Clinical Trials 37 (2014) 225–233

http://www.r-project.org
http://www.sas.com


Download English Version:

https://daneshyari.com/en/article/6151192

Download Persian Version:

https://daneshyari.com/article/6151192

Daneshyari.com

https://daneshyari.com/en/article/6151192
https://daneshyari.com/article/6151192
https://daneshyari.com

