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Sliding friction tests of pin-on-disc type were carried out for carbon steel, pure iron and pure copper,

and the microstructure and hardness near the sliding surfaces were investigated in detail. It was found

that patchy transfer layers with ultra-fine (o200 nm) structures were produced on the disc surfaces.

Nanocrystalline grains of 30–50 nm were identified for carbon steel, and submicron sized grains of 100–

150 nm were observed in pure copper. The thicknesses of the ultra-fine structures were in the range of

10–50mm, depending on the specimen material, sliding speed and applied load. The hardness near the

sliding surface of pure iron was increased compared with the matrix. It was suggested that the

hardening was due to the very fine structure formed by severe plastic deformation, but not due to phase

transformation caused by thermal effects.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Nanocrystalline materials have attracted considerable scien-
tific interests because these materials are expected to possess
superior mechanical properties, i.e. high hardness and toughness.
It has been reported that nanocrystalline structure was formed at
the steel surface by high speed drilling, in which mechanical and
thermal effects were introduced [1]. Moreover, friction-induced
ultra-fine (o200 nm) structures have been reported to be
produced near the sliding metal surfaces [2–5]. The ultra-fine
structure formation is considered to be due to the very large
plastic shear strain caused by sliding friction.

In the present work, sliding friction tests of pin-on-disc type
were carried out, and the microstructure and hardness near the
sliding surfaces were investigated. The influence of specimen
material, sliding speed and applied load on ultra-fine structure
formation and hardness were also studied.

2. Experimental

A common pin-on-disc method as shown in Fig. 1 was
employed in sliding friction tests. A pin, 5 mm in diameter
(the diameter of the contact area was 2 mm) and 16 mm in
length, was loaded on a rotating disc, which had a diameter of

60 mm and a thickness of 5 mm. The materials used for the
pin and disc specimens were 0.45 mass% carbon steel, pure iron
and pure copper. A pin and a disc of the same materials
were rubbed against each other in a normal laboratory air. The
sliding speed was varied in the range of 0.1–5 m/s, and the applied
load was varied in the range from 4.9 to 49.1 N. The
microstructures of the specimens after rubbing were examined
by optical microscopy, SEM and TEM, and Vickers hardness
was measured near the surfaces of the specimens at a test load
of 0.098 N.

3. Results and discussion

Fig. 2 shows the rubbed surfaces of pin and disc specimens of
carbon steel observed by a CCD microscope. Adhesive wear scars
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Fig. 1. Schematic diagram of pin-on-disc friction method employed in this study.
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were observed on the pin and disc surfaces, and at high sliding
speeds of 1.0 and 5.0 m/s, patchy transfer metals were formed on
the disc surfaces.

Fig. 3 is a set of optical micrographs of longitudinal cross-
sections of the carbon steel disc specimens. The applied load was
constant at 19.6 N. It is seen that featureless layers, which had
completely different microstructure from that of matrix, were
formed at the sliding surfaces, and that beneath these layers,
ferrite and pearlite grains were inclined to the sliding direction. At
a sliding speed of 5 m/s (Fig. 3(d)), the featureless layer, which
was about 50mm in thickness and 350mm in length, was
considered to be a metal transfer layer, although it was not
clear that at 0.1 m/s (Fig. 3(b)) and 1.0 m/s (Fig. 3(c)) whether the
featureless layers were produced by metal transfer or not.

Fig. 4(a) is a SEM image of the marked square area of Fig. 3(d).
It was impossible to observe any grain boundary in the transfer
layer, which was also featureless under SEM examination. The
boundary between the transfer layer and plastic flow region was
not clear. TEM observation (Fig. 4(b)) revealed that the transfer
layer consisted of ultra-fine grains with an average grain size of
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Fig. 2. Microscope observations of rubbed surfaces of pin and disc specimens

(specimen material: carbon steel, load: 19.6 N).
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Fig. 3. Optical microstructures of longitudinal cross-sections of carbon steel disc

specimens. (Specimen material: carbon steel, load: 19.6 N.): (a) No friction,

(b) 0.1 m/s, (c) 1.0 m/s and (d) 5.0 m/s.
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Fig. 4. SEM and TEM Microstructures of carbon steel disc specimen. (Specimen material: carbon steel, Sliding speed: 5 m/s, load: 19.6 N.) (a) SEM image of the marked

square area of Fig. 3(d) and Vickers hardness results. (b) TEM observation at the marked square area of the transfer layer in Fig. 4(a).
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Fig. 5. Optical microstructures of longitudinal cross-sections of carbon steel pin

specimens. (Specimen material: carbon steel, load: 19.6 N.): (a) No friction, (b)

0.1 m/s, (c) 1.0 m/s and (d) 5.0 m/s.
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