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Prior to conducting genome-wide association studies (GWAS) of renal traits and diseases, systematic

checks to ensure data integrity and analytical work flow should be conducted. Using positive controls (ie,

known associations between a single-nucleotide polymorphism [SNP] and a corresponding trait) allows for

identifying errors that are not apparent solely from global evaluation of summary statistics. Strong genetic

control associations of chronic kidney disease (CKD), as derived from GWAS, are lacking in the non-African

ancestry CKD population; thus, in this perspective, we provide examples of and considerations for using

positive controls among patients with CKD. Using data from individuals with CKD who participated in the CRIC

(Chronic Renal Insufficiency Cohort) Study or PediGFR (Pediatric Investigation for Genetic Factors Linked to

Renal Progression) Consortium, we evaluated 2 kinds of positive control traits: traits unrelated to kidney

function (bilirubin level and body height) and those related to kidney function (cystatin C and urate levels). For

the former, the proportion of variance in the control trait that is explained by the control SNP is the main

determinant of the strength of the observable association, irrespective of adjustment for kidney function. For

the latter, adjustment for kidney function can be effective in uncovering known associations among patients

with CKD. For instance, in 1,092 participants in the PediGFR Consortium, the P value for the association of

cystatin C concentrations and rs911119 in the CST3 gene decreased from 2.73 10-3 to 2.4 3 10-8 upon

adjustment for serum creatinine–based estimated glomerular filtration rate. In this perspective, we give rec-

ommendations for the appropriate selection of control traits and SNPs that can be used for data checks prior to

conducting GWAS among patients with CKD.
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Genome-wide association studies (GWAS) in-
vestigate millions of genetic markers per

person to identify genomic regions in which genetic
variation associates with a trait or disease. For each
single-nucleotide polymorphism (SNP), summary
statistics (eg, a P value) are calculated for its associ-
ation with the phenotype. The resulting GWAS
file contains millions of lines, which makes visual
data and plausibility checks challenging. Although
there are excellent tools for systematically checking
genome-wide summary statistics, including allele
frequencies and computed association statistics, for
their global distribution,1,2 other systematic errors
can go unnoticed. For example, incorrect association
results may arise from a mismatch between the
genotypes and phenotypes of the individuals (ie,
inadvertent scrambling of the data). Because most
SNPs are not expected to show an association with the
phenotype of interest, such errors would escape global
checks of summary statistics. Hence, additional
checks to reliably assess the integrity of data and
analytical workflow are required.
These considerations highlight the importance of

using a positive control, one or several genomic
markers that are known to reproducibly associate with
an available trait or phenotype. A SNP that is a
suitable positive control should have an effect strong

enough to be detected in as little as a few hundred
samples. As outlined in Box 1, a practical approach is
to survey the GWAS Catalog of the National Human
Genome Research Institute (NHGRI) for phenotypes
and diseases available in a given study and identify
SNPs that previously have shown genome-wide sig-
nificant associations (wP , 1 3 10-7 or ,1 3 10-8,
depending on the study). The SNPs should have been
replicated successfully and shown associations in
samples of the same ancestry as the data to be
analyzed. We suggest reviewing the cited publications
from the GWAS Catalog to select the SNP(s) that
explain the largest amount of the trait variance. If this
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is not reported, summary statistics usually can help
guide the selection of SNPs with the largest effect
estimate and lowest P values in a given study. Last, it
is advantageous to have control SNPs represented on
a given genotyping chip so that imputation is not
required.
Finding a good positive control is challenging for

GWAS in the field of kidney disease. In individuals of
African descent, variants in the APOL1 gene have
been shown to associate strongly with focal segmental
glomerulosclerosis, hypertension-attributed end-stage
renal disease, and chronic kidney disease (CKD) from
a variety of causes.3,4 Therefore, these markers might
serve as positive controls. Because these variants are
ancestry specific, data checks in samples that are not
of African ancestry require the use of other positive
controls.
Using quantitative control phenotypes such as

biomarker concentrations generally is recommended
due to the superior statistical power to detect associ-
ations with continuous phenotypes compared with
binary phenotypes (Box 1). Further, many of them are
widely available. However, reduced kidney function
influences blood concentrations of many biomarkers
by altering their production, metabolism, and/or
elimination. As a result, the genetic influence on
marker concentrations can become less apparent.
A straightforward solution would be to use a

biomarker with extrarenal production and, at least
partially, extrarenal elimination or a phenotypic trait
unaffected by decreased kidney function. As an alter-
native, when evaluating the positive control associa-
tion, itmay be feasible to adjust for glomerularfiltration
rate (GFR) to reduce the effect of reduced kidney
function on the biomarker blood concentration. In the
following paragraphs, and summarized in Table 1, we
present several examples and considerations.
One suitable marker with extrarenal production and

largely extrarenal elimination is bilirubin. Serum
bilirubin concentrations reflect the balance between
its production and elimination. Although liver and
kidney disease can coexist, CKD has not been
described as having a major effect on hepatic func-
tion, and serum bilirubin values of patients with CKD
usually are in the reference range. Polymorphisms in
UGT1A, which encodes the bilirubin UDP (uridine
diphosphate)-glucoronosyltransferase, were identified
initially as associated with bilirubin concentrations in
some cohorts forming the CHARGE (Cohorts for
Heart and Aging Research in Genomic Epidemi-
ology) Consortium.5 In this study, the SNP rs6742078
explained 18% of the variance in bilirubin concen-
trations, with P , 5 3 10-324 and a 0.23-unit higher
log(total serum bilirubin concentration in mmol/l) per
T allele among 9,464 individuals studied. Effect
sizes of this magnitude should be detectable easily at

genome-wide significance even in samples of smaller
size.
Row A of Table 1 shows the association result for

rs6742078 with log(serum bilirubin concentration) in
1,527 participants of European American ancestry of
the CRIC (Chronic Renal Insufficiency Cohort)
Study.6 Allele frequency, effect direction, and effect
size were consistent with previously published results,

Box 1. Workflow to Select Phenotypes and Genetic Markers to

Assess Known Associations for Quality Control Purposes

Step 1: Select 1, or preferably several, available control

phenotypes. Preference should be given to phenotypes/

traits that are continuous and measured (eg, biomarker

concentrations) rather than to those that are self-reported.

Ideally, the chosen biomarker is not generated in the kid-

ney and does not exhibit net renal secretion or

reabsorption.

Step 2: Look for previous GWAS of the corresponding

phenotype/trait in the GWAS Catalog (www.genome.gov/

gwastudies) and in PubMed. Ensure that the published

association was found among individuals of the same

ancestry as your study population, the GWAS was suffi-

ciently powered (large sample size), and the findings were

replicated.

Step 3: Among significantly associated markers (typically

P, 53 10-8), select that which explains the largest

amount of phenotype/trait variance. If this is not reported in

the original publication, select for large effect size esti-

mates and low P values instead. If several markers can be

considered, prefer those with high minor allele frequencies

and those that have been genotyped (rather than imputed)

in your own study.

Step 4: In your study, to the extent possible, model the

association between control trait and marker in the same

way as was done in the original report, including trait

transformation and units. Ensure that the modeled allele

and strand match those in the published report of the

association.

Step 5: Compare direction and effect size of your association

to the published result. Also assess whether the P value

meets statistical significance in your study, but (especially in

smaller studies) do not expect the P value to be as low as

those initially published, which often originate from very

large meta-analyses.

Step 6: If blood concentrations of the chosen biomarker

might be influenced by kidney function, rerun the associ-

ation analyses adjusting for eGFR.

Step 7: If the positive control does not show the expected

direction of association or the magnitude of effect differs

substantially, attempt to evaluate at least a second

control trait. A typical mistake that can cause the

repeated absence of known associations (and is not

identified in any other data checks such as quality con-

trol, exploratory data analysis, data cleaning of pheno-

type and genotype information, and repetition of

association analyses using a different statistical pro-

gram) is a mismatch of the order of individuals in the

phenotype and in the genotype file. This mistake results

in the random shuffling of genotypes and phenotypes,

giving rise to null associations.

Abbreviations: eGFR, estimated glomerular filtration rate;

GWAS, genome-wide association study.
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