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a b s t r a c t

Numerical solution of the Reynolds equation imposes a prohibitive computational cost on the dynamic

analysis of practical squeeze film damped turbomachinery. To surmount this problem, the present

paper develops the use of Chebyshev polynomial fits to identify finite difference (FD) solution of the

incompressible Reynolds equation. The proposed method manipulates the Reynolds equation to allow

efficient and accurate identification in the presence of cavitation, the feed-groove, feed-ports, end-plate

seals and supply pressure. The ability of Chebyshev polynomials to rapidly reproduce FD routines is

demonstrated. The bearing models developed are experimentally proven to give more accurate results

than alternative analytical bearing models.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Squeeze film damper (SFD) bearings are an effective solution
to the problem of attenuating vibration and transmitted forces
caused by rotor unbalance in gas turbine engines. Their simplicity
of construction and consequent robustness mean they are
commonplace in modern aircraft gas turbine engines. For
example, the engines of a leading aero-engine manufacturer
typically have 5–6 SFDs. However, their inclusion requires careful
unbalance response calculations that take into account of the
SFD’s nonlinearity, to ascertain smooth running [1].

Methods used to analyse the nonlinear response of rotor-
dynamic systems may be classified as either time domain or
frequency domain techniques. A time domain method marches
the equations of motion forward in time until a steady-state
solution is reached. This solution may not necessarily be periodic.
This process requires the numerical solution of the coupled
nonlinear equations of motion at each of a very large number of
time steps. A frequency domain approach like the harmonic
balance (HB) method solves nonlinear algebraic equations to
extract steady-state solutions that are assumed to be periodic of
given fundamental frequency. The relative merits of these two
complementary approaches are discussed in [1]. A typical engine
model requires consideration of many hundreds of modes, posing

prohibitive demands on conventional time/frequency domain
methods. The issue of the large number of modes was recently
resolved through the development of novel fast time/frequency
domain methods [1]. However, like conventional methods, these
new methods still require a number of SFD force computations
per time step (time domain) or iteration (HB). In the case of HB,
one iteration requires the calculation of the SFD forces at each of
an adequate number of time points over the period of vibration in
order to obtain their Fourier coefficients. Moreover, the iterative
process requires a Jacobian matrix that is obtained through
repeated calculation of these Fourier coefficients. The SFD model
can cripple a time/frequency domain solver unless the SFD forces
are rapidly computed. This has lead to a trade-off between the
capability/reliability of the SFD model and its computational cost.

Della Pietra and Adiletta [2] provide a comprehensive review
of SFD modelling techniques, where the above-mentioned trade-
off is evident among most of the research works cited. Advanced
SFD models based on the Navier–Stokes equation to account for
fluid inertia were proposed in [3,4]. However, in order to enable
efficient solution for just one SFD, the system dynamics had to be
restricted to circular centred journal orbits or small-amplitude
orbits about the bearing centre. These restrictions render such an
approach unsuitable for real engines like that considered in [1].

The typical and more practical approach in SFD modelling is
based on the incompressible Reynolds lubrication equation to
describe the relationship between the pressure in a fluid film and
the journal motion. Even then, analytical solution is only achiev-
able if the equation is simplified. Most simplifications are based
upon neglecting pressure gradients in one direction, resulting in
solutions termed long and short bearing approximations and their
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variants (e.g. [5]). The most prominent of these variants involves
the combination of the short and long pressure solutions through
an ‘end-leakage factor’ l that accounts for the degree of end-sealing
[5,6]. This model is popular with industry and was used recently for
whole-engine analysis with 5 SFDs [1]. The factor l can be
described as an empirical ‘fudge factor’ that in reality can only be
related to the parameters of a given bearing when it is hosted in a
given experimental setup. Attempts to theoretically relate it to the
SFD parameters have proved unsuccessful [5].

To solve the Reynolds equation in its full two-dimensional
form, with arbitrary boundary conditions, a numerical scheme
like finite difference [4], or finite element (FE) and its variants [7],
is necessary. The direct use of such a numerical scheme within a
time/frequency domain solver is computationally prohibitive for
practical applications. Hence, the recently added SFD routine in
NastranTM is based on a one-dimensional approximation of the FD
model that is restricted to long and short unsealed SFDs [8]. The
full 2-D model can be rapidly deployed within a solver via an
identification scheme, which usually involves an interpolation
procedure [9,10]. Rodrigues et al. [9] use Chebyshev polynomial
fits of a numerical bearing model to relate the three variables e, _e
and _c to the two orthogonal output force vectors QR and QT

(Fig. 1).
The assumption of a uniform boundary condition at the groove

in [9] meant that, in the absence of fluid inertia effects, QR,T were
only functions of the aforementioned three variables. The
inclusion of feed-ports into a bearing model necessitates the
inclusion of c in the input space. Identification of functions with

more than three variables is possible, yet the computation
becomes numerically cumbersome [9]. It follows that the
inclusion of feed-ports would not be practical using the technique
of Rodrigues et al.

Before the identification procedure may take place, the range
of each of the input variables must be prescribed. This is simple in
the case of e (bounded by radial clearance c) and c (if the feed-
ports are equi-spaced by angle a around the circumference then
QR,T are periodic in c, period a). However, selecting a suitable
range for _e and _c is more difficult, since these variables have no
natural bounds. For example in [9] the upper limits of the
magnitudes of these two variables were set arbitrarily to 0.7 m/s
and 20,000 rad/s, respectively. The judicious prescription of the
range of these two input variables is critical to maintaining
accuracy of the fit. Widening their range lowers the quality of fit,
all other things kept equal. A further consideration is that part of
the ‘training’ data required for the calculation of the Chebyshev
coefficients involves unrealistic combinations of the input vari-
ables, namely high e and high _e, for which QR-N. This condition
is unrealistic since QR increasingly acts to reduce _e as e grows. The
inclusion of such unrealistic input combinations skews the
identification.

The work of Chen et al. [10], although using a crude
identification technique based on linear interpolation, surmounts
the problems associated with defining the input range by
applying a reduction technique that exchanges _e and _c for a
single variable with limits of 71. Moreover, the ability to reduce
the number of input variables by one makes it practical to use
Chebyshev polynomials to identify SFD models that necessitate
inclusion of c. The major shortcoming of the reduction technique,
as applied by Chen et al., is that it cannot accommodate fluid film
rupture at a non-atmospheric pressure (e.g. absolute zero) and
cannot handle nonzero boundary conditions (e.g. oil supply
pressure).

The research of the present paper addresses the need for
reliable identification of numerical models. It combines the
relative strengths of the work in [9,10] and uses two novel
techniques to overcome their limitations. Firstly, Chebyshev
interpolation, while using the reduction technique, is performed
on the pressure. This allows post-interpolation truncation
of the pressure to account for cavitation. Secondly, static and
dynamic elements of the pressure function are separated. This
treatment allows the identification of bearing models that haveFig. 1. Polar coordinate system.

Nomenclature

aj,bj,cj,dj grouped constants—see Section 2.1
Ah area of feed-port, m2

c clearance of a centred SFD, m
Ci Chebyshev polynomial coefficients
d gap between sealing plate and journal, m
e journal eccentricity, m
F unbalance force amplitude, N
h squeeze film thickness, m
I moment of inertia about pivot, kg m2

lp length feed-port, m
ls effective length of end-plate seal, m
L land length, m
Lg groove length, m
p pressure, Pa
p0 outlet pressure, Pa
ps supply pressure, Pa
pi,j pressure at node i,j in the mesh, Pa

Q squeeze film force, N
R radius of SFD journal, m
t time, s
Ti the Chebyshev polynomials
u fluid velocity in the x direction, m/s2

U unbalance, kg m
vf average fluid velocity in feed-port, m/s2

w fluid velocity in the z direction, m/s2

Dx, Dz node spacing in the x and z directions, m
Cj, Ej, Dj, Rj FD matrices
e non-dimensional journal eccentricity
y angular location, rad, see Fig. 2
m dynamic viscosity, Pa s
c attitude angle, rad
o rotational speed, rad/s
ðÞ̂ indicates a non-dimensional property
ð_Þ differentiation with respect to time t

ðÞ
0 differentiation with respect to tð ¼otÞ
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