© 2011 International Society of Nephrology

see commentary on page 1014

Fibrinogen, acting as a mitogen for tubulointerstitial fibroblasts, promotes renal fibrosis

Inga Sörensen¹, Nathan Susnik¹, Therese Inhester¹, Jay L. Degen², Anette Melk³, Herrmann Haller¹ and Roland Schmitt¹

¹Department of Nephrology, Hannover Medical School, Hannover, Germany; ²Division of Pediatric Hematology/Oncology, Cincinnati Children's Hospital Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA and ³Division of Pediatric Nephrology, Gastroenterology and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover, Germany

Fibrinogen plays an important role in blood coagulation but its function extends far beyond blood clotting being involved in inflammation and repair. Besides these crucial functions it can also promote tissue fibrosis. To determine whether fibringen is involved in the development of renal tubulointerstitial fibrosis we utilized the profibrotic model of unilateral ureteral obstruction in fibrinogen-deficient mice. In the heterozygotes, obstruction was associated with a massive deposition of intrarenal fibrinogen. Fibrinogen deficiency provided significant protection from interstitial damage and tubular disruption, attenuated collagen accumulation, and greatly reduced de novo expression of α-smooth muscle actin in the obstructed kidney. While no differences were found in renal inflammatory cell infiltration, fibrinogen deficiency was associated with a significant reduction in interstitial cell proliferation, a hallmark of renal fibrosis. In vitro, fibrinogen directly stimulated renal fibroblast proliferation in a dosedependent manner. This mitogenic effect of fibrinogen was mediated by at least three different cell surface receptors on renal fibroblasts: TLR2, TLR4, and ICAM-1. Thus, our study suggests that fibringen promotes renal fibrosis by triggering resident fibroblast proliferation.

Kidney International (2011) **80,** 1035–1044; doi:10.1038/ki.2011.214; published online 6 July 2011

KEYWORDS: fibroblast; obstructive nephropathy; renal fibrosis

anced, these wound-healing mechanisms can contribute to excessive scar formation and organ fibrosis. Gene-targeting studies suggest that fibrinogen might play a role in tipping the balance between healthy wound-healing and fibrotic scarring.⁶ Consistent with this hypothesis, fibrinogen has been demonstrated to promote the development of fibrosis in several organs including pancreas, skin, and muscle.⁶⁻⁸ In the kidney, progressive fibrosis is the final pathway of most chronic diseases leading to irreversible loss of renal function. Fibringen might be a novel candidate molecule in the development of renal fibrosis given the above-mentioned results from other organs. Massive fibrin deposition is commonly observed in renal biopsies in a variety of acute and chronic kidney diseases, 10-12 and experimentally it has been shown that the lack of fibrinogen can attenuate renal impairment in inflammatory glomerulonephritis. 13 Therefore, the aim of this study was to address the hypothesis that

The primary role of the coagulation system is to prevent

blood loss after vascular injury by ensuring the formation of

stable hemostatic clots. However, the function of the

coagulation system extends far beyond blood clotting, including such diverse processes as protection against

infection, inflammation, and tissue repair. 1,2 Some of these

effects have specifically been linked to fibrinogen.3-5 Fibrino-

gen is found in plasma at a concentration of 1.5-4.5 g/l and

consists of two identical subunits that contain three polypep-

tide chains: α , β , and γ . Cleavage by thrombin releases

fibrinopeptides A and B and converts fibrinogen into fibrin.

Activation of the coagulation cascade and the deposition of

fibrin into the provisional extracellular matrix is an integral

part of tissue injury. The fibrin-containing matrix can promote infiltration of repair cells and can activate healing

mechanisms such as angiogenesis, reepithelialization, cell

proliferation, and wound contraction. However, if imbal-

To test the impact of fibrinogen on renal fibrosis, kidneys from fibrinogen knock-out (Fib^{-/-}) and heterozygous (Fib^{+/-}) mice were compared at 1 or 2 weeks of unilateral ureteral obstruction (UUO). It was found that the lack of fibrinogen was associated with a significant protection from

fibringen plays a direct role in the development and

progression of renal fibrosis.

Correspondence: Roland Schmitt, Department of Nephrology, Hannover Medical School, Carl-Neubergstr. 1, 30625, Hannover, Germany. E-mail: schmitt.roland@mh-hannover.de

Received 5 February 2011; revised 14 April 2011; accepted 17 May 2011; published online 6 July 2011

developing tubulointerstitial damage. UUO kidneys from ${\rm Fib}^{-/-}$ mice showed significantly less deposition of extracellular matrix and greatly attenuated expansion of resident fibroblasts. *In vitro*, fibrinogen stimulated renal fibroblast proliferation directly, which was mediated by at least three different cell surface receptors.

RESULTS

Fibrinogen accumulates in UUO kidneys and associates with tubulointerstitial damage

Consistent with published data by Yamaguchi et al., 14 we observed a more than tenfold increase of fibrinogen by immunoblot in UUO kidneys from wild-type mice after 7 days of ureteral obstruction (Figure 1a). Immunoreactivity recognizing both fibrinogen and fibrin was restricted to the intravascular space in contralateral kidneys, whereas it was massively enhanced in the tubulointerstitial space of UUO kidneys (Figure 1b and c). To test whether fibrinogen would contribute to the development of renal fibrosis, Fib^{-/-} mice were subjected to UUO and compared with heterozygous littermates. Fib^{-/-} mice had a normal phenotype under baseline conditions and no appreciable increase in bleeding risk or healing defects after UUO surgery. At day 14 of obstruction, kidneys from Fib+/- animals exhibited fibrinogen deposits throughout the entire renal interstitium (Figure 1d and e). In some areas we found particularly intense accumulations, which was often associated with increased tubulointerstitial damage (Figure 1d). As expected, we found no fibrinogen in kidneys from Fib^{-/-} mice (Figure 1f). At day 7 of UUO, both groups showed dilated tubules with flattened epithelium and a mild increase in interstitial volume without histologically appreciable differences (Figure 1g-i). At 14 days, however, loss of tubular structures and expansion of interstitial cells and matrix was significantly more severe in Fib +/- when compared with Fib^{-/-} mice (Figure 1i-k). Whereas tubules were often replaced by fibrous tissue in Fib^{+/-} kidneys, tubular structures persisted significantly longer in Fib $^{-/-}$ mice (Figure 1j-m). We consistently found a significant reduction in intrarenal collagen deposition in Fib^{-/-} mice as shown by Picrosirius Red staining (Figure 2a and b) and immunoblot (Figure 2c).

Fibrinogen deficiency has no impact on inflammatory cell infiltration

Although their role is not completely understood,¹⁵ inflammatory cells infiltrating the interstitium are characteristic features of renal fibrosis. Consistently, increased numbers of infiltrating CD45-positive leukocytes, CD4-positive lymphocytes, F4/80-positive macrophages, and Ly-6B.2-positive polymorphonuclear cells were found in UUO kidneys of both groups. Fibrinogen deficiency however, had no impact on the respective cell counts (Figure 2d and e).

Fibrinogen deficiency is associated with reduced numbers of (myo)fibroblasts in UUO

 α -Smooth muscle actin (α -SMA), which is used as a marker of myofibroblasts, 9 was significantly upregulated in the

tubulointerstitial space of UUO kidneys from both groups. However, the upregulation was significantly higher in Fib +/animals when compared with Fib-/- littermates (Figure 3a and b). For further analysis of differences in interstitial cell expansion, immunostainings using S100A4 were performed, showing a massive increase in S100A4-positive cells in Fib $^{+/-}$ when compared with Fib $^{-/-}$ kidneys (Supplementary Figure S1B online). S100A4 is widely used as a marker for fibroblasts and myofibroblasts, 16 but its specificity has been questioned because of expression by inflammatory cells.¹⁷ We therefore quantified only those S100A4-positive cells that were CD45 negative (Figure 3c-e), and found that fibrinogen deficiency was associated with significantly lower numbers of S100A4+/CD45- cells after 7 and 14 days of UUO (Figure 3e). These results were further confirmed by using ER-TR7, an independent fibroblast marker¹⁸ (Figure 3f and g), and suggest a differential expansion of the interstitial fibroblast population as a possible mechanism for the profibrogenic effects of fibrinogen.

Fibrinogen deficiency is associated with reduced interstitial cell proliferation in UUO

Proliferation of interstitial fibroblasts has been identified as a leading mechanism in progressive renal fibrosis. ^{19,20} In agreement with this, we found a high rate of proliferation in interstitial fibroblasts in UUO kidneys from both groups. However, staining for cell cycling marker Ki67 exhibited significantly lower rates of interstitial cell proliferation in Fib^{-/-} kidneys when compared with Fib^{+/-} kidneys after 7 and 14 days (Figure 4a). In contrast, no difference was observed in the number of proliferating tubular epithelial cells between the groups (Supplementary Figure S1C online). These findings suggest that fibrinogen exerts a profibrogenic effect by enhancing the proliferation of interstitial fibroblasts.

Fibrinogen directly mediates the proliferation of renal fibroblasts in vitro

It has been previously demonstrated that fibrinogen is a mitogen for some cell types²¹ but not for others.⁷ Using normal rat kidney interstitial fibroblasts (NRK-49F cells), we found that exposure to fibrinogen significantly increased cell proliferation in a dose-dependent manner (Figure 4b). This effect was cell-type specific, as no changes in proliferation were observed in renal epithelial cells (mPT and IMCD3 cells; Supplementary Figure S1D and E online). To substantiate the observed effect, we exposed renal fibroblasts to plasma from Fib^{-/-} and Fib^{+/-} mice. Consistent with the first results, we found a significantly stronger proliferation using fibrinogencontaining plasma when compared with fibrinogen-free plasma (Figure 4c). Collectively, these *in vitro* data indicate that fibrinogen acts as a direct mitogen on renal interstitial fibroblasts.

Fibrinogen does not promote the conversion of fibroblasts into myofibroblasts

The transition of resting fibroblasts into active α -SMA-positive myofibroblasts is regarded as a critical event in renal

Download English Version:

https://daneshyari.com/en/article/6162100

Download Persian Version:

https://daneshyari.com/article/6162100

<u>Daneshyari.com</u>