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Calculation of Stribeck curves for (water) lubricated journal bearings

Alex de Krakera,�, Ron A.J. van Ostayena, Daniel J. Rixenb

aLaboratory of Tribology, Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2,

2628 CD Delft, The Netherlands
bEngineering Dynamics, Department of Precision and Microsystems Engineering, Faculty of 3mE, Delft University of Technology, Mekelweg 2,

2628 CD Delft, The Netherlands

Received 10 January 2006; received in revised form 10 April 2006; accepted 26 April 2006

Available online 14 June 2006

Abstract

This paper describes a mixed elastohydrodynamic lubrication (EHL) model for finite length elastic journal bearings. The finite element

method was employed to discretise the coupled system of 2D–3D Reynolds-structure equations and to compute Stribeck curves at

constant load. As underrelaxation strategies have been found to be insufficient for an iterative solution of this problem, artificial

dynamics have been added to the numerical structure equations in order to solve for stationary solutions of the fluid–structure problem.

An ideal plastic asperity contact model together with an effective film thickness formulation according to Chengwei and Linqing was

employed in order to compute the contact pressure in mixed lubrication. The method presented in this paper is applied to a typical water

lubricated journal bearing problem. Computed Stribeck curves are presented and the numerical performance of the method is evaluated.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Many elastohydrodynamic (EHL) journal bearing mod-
els and algorithms solving the coupled system of equations
arising from the interaction between the lubricating fluid
and the deformation of the bearing have been published [1–
5]. Early EHL journal bearing models, such as presented by
Higginson [1], apply a 1D thin layer elastic deformation
model in order to calculate the bearing deflection and show
how the load capacity for a given eccentricity ratio is
affected by the bearing flexibility. Oh and Huebner [2]
developed a 2D–3D finite element approach to the EHL
journal bearing problem and employed a staggered
iterative algorithm to solve for the fluid–structure equili-
brium. It was concluded in their work that an elastic
bearing is certainly not inferior compared to the rigid
bearing, but has the ability to distribute the load over a
larger bearing surface area and that for the same minimum
film thickness and peak pressure a higher load capacity can
be obtained. With respect to their numerical solution

method, they remarked that it did not converge when the
bearing deformation was of the same order of magnitude as
the film height. Even with various underrelaxation
strategies, convergence of their solution was not ensured.
Potential asperity contact at high-eccentricity ratios is

left out of consideration in these early publications. More
recently, the paper of Wang et al. [5] incorporates asperity
contact by the elastic–plastic asperity contact model of Lee
and Ren in order to study mixed lubrication (ML)
phenomena. Three major factors affecting lubrication
performance were studied: elastic deformation of the
bearing, surface roughness effect on lubrication and
asperity contact pressure. Bearing deflection was evaluated
by reduction of the full 3D FEM stiffness matrix into a 2D
flexibility matrix. The average flow model of Patir and
Cheng (P&C) was employed to account for roughness
effects on lubrication.
A most useful tool for the design of journal bearings is

the Stribeck curve as it clearly points out the critical
journal velocity at which the transition from EHL to ML
takes place or at which velocity a certain acceptable
coefficient of friction is exceeded. For soft-EHL problems,
such as arising from polymer bearings, it became clear that

ARTICLE IN PRESS

www.elsevier.com/locate/triboint

0301-679X/$ - see front matter r 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.triboint.2006.04.012

�Corresponding author. Tel.: +3115 27 83726; fax:+3115 27 87980.

E-mail address: A.deKraker@3mE.TUDelft.NL (A. de Kraker).



solving the coupled fluid–structure equations is not
straightforward [2]. The papers cited above provide useful
insight into ML phenomena but cannot be used as a tool
for journal bearing design optimisation. In this paper, we
report about a computational method solving the mixed
soft-EHL problem which can be used in optimisation of the
journal bearing design.

2. Problem formulation and equations

In ideal smooth gaps that have small heights and height
variations and a low Reynolds number, the flow is
dominated by viscous forces and inertia effects can be
neglected. The flow in such a gap is a combination of
Couette and Poisseuille flow and can be described by the
Reynolds equation
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with h the film thickness and r the fluid density. Since the
magnitude of the pressure in a conformal contact as
encountered in journal bearings remains limited, both the
fluid density and viscosity Z are assumed constant
throughout this paper. The surface velocities are denoted
by U1 and U2, respectively. Furthermore, pf represents the
hydrodynamic or fluid pressure. Real surfaces are not ideal
smooth and the film thickness is generally given by

hT ¼ hþ d1 þ d2, (2)

where h is the compliance or nominal film thickness and d1
and d2 denote the roughness amplitudes of the surfaces.
With s1 and s2 the standard deviations of d1 and d2,

respectively, the composite rms surface roughness—or Sq

value in engineering terms—for a pair of rough surfaces is

s ¼ Sq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22

q
. (3)

Embracing all surface details in a deterministic manner
was—and still is—not feasible from a numerical point of
view in a coupled 2D–3D EHL problem. Hence, an average
rough Reynolds equation was derived by Patir and Cheng
[6] correcting the Reynolds equation for the film height
variations resulting from a randomly distributed surface
profile:
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with h the nominal film thickness and h̄T the mean film
thickness. For a Gaussian distributed surface roughness,
leaving roughness deformation out of consideration, h̄T is
equal to h. The correction factors fpx and fpy are pressure
flow factors and fs is a shear flow factor, correcting for the
fluid transport by the roughness valleys. The shear flow
factor, however, is equal to zero if the surfaces have the
same Sq roughness [6], as is assumed throughout this
paper.
Roughness deformation can be the result of local

hydrodynamic pressure build up or it can result from
contact between the surfaces. Due to piezoviscous effects,
roughness deformation due to local hydrodynamic pressure
build up plays an important role in concentrated EHL
contacts—such as that occur in ball bearings—, but is of
practically no importance in a journal bearing system. In
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Nomenclature

c radial clearance (m)
C damping matrix (N s/m)
D bearing diameter (m)
e eccentricity (m)
E Young’s modulus (Pa)
f bearing coefficient of friction (–)
f c coefficient of friction in dry contact (–)
F c nodal contact force (N)
F f nodal fluid force (N)
h nominal film thickness (m)
ht effective film thickness (m)
h̄T mean film thickness (m)
H hardness (Pa)
K stiffness matrix (N/m)
L bearing length (m)
W bearing load (N)
W t target load (N)
p total pressure (Pa)
pf hydrodynamic pressure (Pa)

pc contact pressure (Pa)
R journal radius (m)
S scaling factor (–)
Sq surface roughness parameter (m)
t bearing thickness (m)
u vector with nodal displacements (m)
_u discrete time derivative of u (m/s)
U ;U1;U2 surface velocity (m/s)
x; y; z local cartesian coordinate system (m)
X ;Y ;Z global cartesian coordinate system (m)
a numerical damping coefficient (s)
Dt time step (s)
Z dynamic viscosity (Pa s)
n Poisson ratio (–)
o journal frequency (rpm)
f circumferential coordinate (rad)
fpx;f

0
px;fpy;f

0
py pressure flow factor (–)

fs;f
0
s shear flow factor (–)

r fluid density ðkg=m3Þ

s0 projected bearing pressure (Pa)
y load angle (�)
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