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Abstract

The steady Couette flow of a Newtonian fluid between two plates, one of them a plane, the other one provided with riblets aligned

perpendicular to the flow direction, is taken as a model for lubricant friction with wall roughness. In cases where the amplitude of the

riblets is small compared to the riblet spacing, Reynolds lubrication approximation leads to an explicit solution. In contrast to this, a

treatment of the full hydrodynamic equations is required for higher amplitudes. Under creeping flow conditions, an analytical treatment

of the Stokes equations based on complex function theory allows for a reduction of the problem to the solving of ordinary differential

and integral equations for functions of one variable. After this problem reduction, the resulting equations are solved by Fourier analysis

and computer algebra.

The resulting streamline patterns of the flow reveal the formation of vortices under certain conditions. Since these vortices act like a

kind of fluid roller bearings, their influence on the drag force and material transport of the lubricant is studied.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The laminar drag flow between two parallel plates,
wellknown as plane Couette flow, is a standard example in
hydrodynamics [1]. It is also the basis for the simplest
model for lubricant friction [2,3], which predicts a linear
dependence of the friction force F per plate area A on the
velocity U of the moving plate according to

F

A
¼ m0U , (1)

with the friction coefficient m0 given by the viscosity and
the plate distance as m0 ¼ Z=H. Modifications of plane
parallel plates can also be found in literature e.g. flows with
one plate being slightly inclined and of finite extension or
Taylor–Couette flows with eccentric inner cylinder. The
predominant part of these works is based on Reynolds’
lubrication approximation [4]: for sufficiently thin films, i.e.
if the aspect ratio Lz=Lx of the length scales is sufficiently
small, the hydrodynamic equations are reduced to one
single equation namely the Reynolds’ equation [3]. Further
requirements for the validity of the Reynolds’ equation are,

that the flow is steady, that the viscosity is constant, that
inertia is negligible and that the film is yet thick enough to
neglect the influence of Van der Waals forces on the flow.
In this paper we pay attention to the steady and

incompressible Couette flow between two plates under
creeping conditions with one plate being provided with a
periodically varying profile. Note, that such plate corruga-
tions—although unwanted—are often produced during
manufacturing. Taking periodic plate corrugations also as
a simple model for roughness, we especially investigate in
cases where the amplitude of the profile is of the same order
as its wavelength. Since the basic assumption Lz=Lx51 for
Reynolds’ lubrication approximation is violated in some
cases, our analysis starts from the hydrodynamic equations,
namely from the continuity equation, the Stokes’ equations
and the associated boundary conditions.
For an analytic description of the drag flow we make use

of a methodical approach based on an exact solution of the
biharmonic equation using complex function theory [5]. An
important feature of this analytic approach is its exactness:
in contrast to perturbation theory, it is not restricted to
cases with small aspect ratio of bottom corrugations.
This paper is organized as follows: in Section 2 the

system’s geometry is defined. Field equations and associated

ARTICLE IN PRESS

www.elsevier.com/locate/triboint

0301-679X/$ - see front matter r 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.triboint.2006.02.058

E-mail address: markus.scholle@uni-bayreuth.de.

www.elsevier.com/locate/triboint


boundary conditions are formulated. Using analytical
methods, the mathematical problem is reduced to a set of
integral identities for a single function of one variable in
Section 3. Its solution is found by discretization in terms of
Fourier series. Resulting streamline patterns are shown in
Section 4 and compared with results from lubrication
approximation. We analyze and discuss generation and
evolution of vortices and their influence on drag and
material transport.

2. General formulation

2.1. The hydrodynamical equations

The stationary flow of an incompressible Newtonian
fluid between two plates, as shown in Fig. 1, is considered.
The upper plate, moving with constant velocity U, is
assumed to be plane, whereas the lower, fixed plate is
provided with periodic corrugations of wavelength l. The
mean distance between the two plates is denoted by H.
Gravity forces are not considered.

We use a Cartesian coordinate system with the x-axis
placed at the mean level of the bottom contour and the z-
axis oriented in vertical direction. The position x ¼ 0 is
placed at a minimum of the undulation.

As characteristic length l=ð2pÞ is used for length scaling
in all directions. The velocity of the upper plate U is used
for the scaling of velocities in all directions. For the
pressure scaling we take the characteristic shear stress
2pZU=l, with Z denoting the shear viscosity of the fluid.
Using above scaling the upper and lower plate boundaries
are given as

z ¼ h, (2)

z ¼ bðxÞ, (3)

with the dimensionless mean plate distance h:¼2pH=l and
a 2p-periodic function bðxÞ characterizing the shape of the
corrugations at the lower plate. The mean value of b

vanishes due to above definition of the coordinate system.
Neglecting inertia effects, the flow between the two

plates is determined by the continuity equation and Stokes’
equations

r �~v ¼ 0, (4)

~0 ¼ �rpþ r2~v (5)

as basic field equations for the velocity field ~v ¼ ~vðx; zÞ and
the pressure p ¼ pðx; yÞ. Above equations are supplemented
by the no-slip conditions at the lower plate z ¼ bðxÞ and at
the upper plate z ¼ h

~vðx; bðxÞÞ ¼~0, (6)

~vðx; hÞ ¼ ~ex. (7)

A two-dimensional flow geometry can be assumed,
provided that the plates are of infinite length and depth.
Then, the representation of the velocity field by a stream
function c ¼ cðx; zÞ as

~v ¼
qc
qz
~ex �

qc
qx
~ez (8)

is possible. Note, that by means of the ansatz (8) the
continuity equation (4) is identically fulfilled. The Stokes
equations (5) read then in terms of the stream function

qp

qx
¼

q
qz

q2

qx2
þ

q2

qz2

� �
c, (9)

qp

qz
¼ �

q
qx

q2

qx2
þ

q2

qz2

� �
c, (10)

and the no-slip conditions (6), (7) take after decomposition
in normal and tangential components the form

qc
qx
þ b0ðxÞ

qc
qz

� �����
z¼bðxÞ

¼ 0, (11)

qc
qz
� b0ðxÞ

qc
qx

� �����
z¼bðxÞ

¼ 0, (12)

qc
qx

����
z¼h

¼ 0, (13)

qc
qz

����
z¼h

¼ 1. (14)

Eqs. (11), (13) are integrable and can be written alter-
natively as algebraic conditions

cðx; bðxÞÞ ¼ cb ¼ 0, (15)

cðx; hÞ ¼ cs ¼ const, (16)

i.e. the shapes of the plates are streamlines.

2.2. Drag and material transport

We calculate the relevant integral quantities, namely the
drag force and the flow rate. Subsequently by the brackets
h�i we denote the mean value over a period, i.e.

hf i:¼
1

2p

Z þp
�p

f ðxÞdx. (17)
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Fig. 1. Geometry and notations of the flow.
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