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Abstract

The simulation of fretting fatigue with the classical incremental method results in the lengthy and repeated calculations. This paper

presents a simplified analysis method for the modeling of the mechanical behavior of inelastic state due to fretting fatigue. This approach has

been proposed by Zarka et al. in order to predict the nature of the limit state of structures and the structural behavior under cyclic loading. It

decreases significantly the computational complexity and duration of the calculations in comparison to classical incremental formulations.

This approach is applied to the problem of dry contact between cylider pads agians flat specimen. The calculations results are in good

agreement with the experimental observations.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fretting fatigue is a common and serious problem which
occurs in a wide variety of engineering components such as
in riveted joints or at contacting strands in wire ropes. It
takes place when small oscillatory displacements between
contacting materials cause surface damage. This eventually
results in the development of a fatigue crack in components
subjected to a superimposed alternating tensile stress. The
prediction of damage and wear of materials under repeated
moving contacts requires first the determination of the
limit response in terms of stress and strain. The response of
a structure subjected to a cyclic loading may be:

(a) Elastic shakedown: At any point of the structure, the
plastic strain reaches a constant stabilized limit state
(Fig. 1(a)).

(b) Plastic shakedown: For at least one point of the
structure the plastic strain reaches a periodic stabilized
limit state (Fig. 1(b)).

(c) Ratchetting: There is at least one point in the structure
where the plastic strain rises incrementally until the
collapse of the structure (Fig. 1(c)).

The incremental method based on a step-by-step
integration could be used to calculate the possible
stabilized state resulting in lengthy calculations. For a
given load variation domain, safety factors against first
yielding, inadaptation and limit state can be defined by the
limit analysis and shakedown theories. Both these methods
are limited. The former can take into account only the
proportional loading states. The latter can be used with
non-proportional stress state but it considers only elastic
shakedown and as a result oversize the structure when
plastic shakedown occurs. Other methods, called ‘‘direct’’
or ‘‘simplified’’ based on the shakedown theorems and their
specialization to limit theorems are receiving increasing
alternation for the prediction of structural failure in the
inelastic range, although they are basically originated
decades ago within classical plasticity. A survey of these
methods is given by Weichert et al. [1]. In this paper, a
simplified analysis method for the modeling of the
mechanical behavior of inelastic structures is used to study
the problem of fretting. This approach has been proposed
by Zarka et al. [2] in order to predict the nature of the limit
state of structures and the structural behavior under
cyclic loading. It decreases significantly the computational
complexity and duration of the calculations in comparison
to classic incremental formulations. By means of a
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decomposition of the real response (into an elastic and a
plastic part) and of a change of variable, the plastic strains
and the residual stresses can be determined in the whole
structure, thanks to a purely elastic calculation. This
method are used to study three-dimensional structures [3]
and thin shell structures [4].

In a second part, application to fretting fatigue in
relation with material fatigue properties are presented.

2. Principle of the method

The material considered is a standard material model [5]
with the linear kinematic hardening assumption (Prager’s
model [6] with Von Mises yield criterion). These materials
have an associate normal flow rule base on Drucker’s
postulate [7] and follow the maximal plastic work principle
of Hill [8]. The assumptions of small deformations and
quasi-static loading are made. Under these assumptions,
the inelastic behavior of the materials is described by

� a yield function: f ðsÞp0,
� a normality rule: _ep ¼ lðqf =qsÞ,

where f represents one or several functions and defines the
threshold associated with a unilateral constraint and with
lX0 if f ðsÞ ¼ 0, and _ep ¼ 0 if f ðsÞp0.

We denote yðtÞ ¼ CEPðtÞ the translation of the yield
surface f. C stands for the hardening modulus and EPðtÞ for
the plastic strain. In the deviatoric stress space, f is a
sphere. The center and the radius of this sphere are,
respectively, SðtÞ and s0. This sphere is defined by

f ðSðtÞ � yðtÞÞ � s20, (1)

where s0 stands for the yield stress, f for the Von Mises
effective stress and SðtÞ ¼ devSðtÞ for the deviatoric part
of SðtÞ.

The actual stress tensor SðtÞ is decomposed as the sum of
two termsX
ðtÞ ¼

Xel
ðtÞ þ RðtÞ, (2)

where RðtÞ is the residual stress field and SelðtÞ is the elastic
stress tensor of the structure assuming purely elastic.

The total strain is usually made of three components:

EðtÞ ¼ EeðtÞ þ EPðtÞ þ EIðtÞ, (3)

where EeðtÞ ¼MSðtÞ is the elastic part of the actual
response and EIðtÞ the initial strain of the structure. M is
the elasticity matrix and it depends on E (Young’s
modulus) and u (Poisson’s ratio).
The inelastic response is represented by RðtÞ, EPðtÞ

and yðtÞ. In the deviatoric stress space, Eq. (2) is
written as

SðtÞ ¼ SelðtÞ þ devRðtÞ, (4)

where devRðtÞ denotes the deviatoric part of the residual
stress tensor.
Eq. (4) is transformed to

SðtÞ � yðtÞ ¼ SelðtÞ � ðyðtÞ � devRðtÞÞ. (5)

The simplified analysis introduces the modified structur-
al hardening parameter Y ðtÞ which is defined as follows:

Y ðtÞ ¼ CEPðtÞ � devRðtÞ. (6)

This new tensor Y ðtÞ has no physical meaning, but it
enables us to express the yield criterion in a new form
which is based on the elastically computed deviatoric
stresses

f ðSelðtÞ � yðtÞÞps20. (7)

We will now consider the Y space.
The fretting loading is non-proportional. In the Y space,

the path of loading is represented by a series of spheres
centered at SelðtÞ with a radius of s0. If the intersection CL

of these spheres is non-void for all the points of the
structure (Fig. 2(a)), the elastic shakedown occurs, if the
intersection CL is void for at least one point (Fig. 2(b)),
then plastic shakedown occurs.
Moreover, we considered the structures submitted to

fretting fatigue with high number of cycles. In other words,
we suppose that the structure has reached a stable state of
elastic shakedown (Fig. 1(a)).
Once the limit state is found, the plastic strains and

residual stresses fields are determined by the following
projection method. During one cycle, global elastic
calculation is performed to determine SelðtiÞ for ti 2 ½0;T �
and i 2 ½0;N�. In Y space, we obtain N spheres centered at
SelðtiÞ with the radius of s0.
Since the limit state YL will be in CL (YL must be

plastically admissible at any time), the transformed
parameter Y1 after the end of the first cycle are locally
projeted orthogonally on the local intersection CL of the
plastic yield surface, giving YL.
To obtain better results, we defined an initial trans-

formed parameter Y0 obtained by a step-by-step resolution
of the real elastoplastic problem. When Y

0
is known, we

will obtain Y
1
by projecting Y

0
on the intersection of the

first sphere CðSel
t1
Þ and the second sphere CðSel

t2
Þ (Fig. 3(a)).

Then Y
1
is projected on the intersection of the second

sphere CðSel
t2
Þ and the third sphere CðSel

t3
Þ to get Y

2
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Fig. 1. Three limit states of structures.
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