
On the tangential contact behavior at elastic–plastic spherical
contact problems

E. Olsson, P.-L. Larsson n

KTH Royal Institute of Technology, Department of Solid Mechanics, Teknikringen 8D, 100 44 Stockholm, Sweden

a r t i c l e i n f o

Article history:
Received 26 May 2014
Received in revised form
22 July 2014
Accepted 27 July 2014
Available online 5 August 2014

Keywords:
Spherical contact
Powder compaction
Shear stresses
Finite element simulations
Elastic–plastic materials
Mises plasticity

a b s t r a c t

The problem of tangential contact between an elastic–plastic sphere and a rigid plane is studied
analytically and numerically with the specific aim to derive force–displacement relations to be used in
numerical simulations of granular materials. The simulations are performed for both ideal-plastic and
strain hardening materials with different yield stresses and including large deformation effects in order
to draw general conclusions. The results are correlated using normalized quantities pertinent to the
correlation of indentation testing experiments leading to a general description of the tangential contact
problem. Explicit formulas for the normal and tangential forces are presented as a function of the
tangential displacement using data that are easily available from axi-symmetric analyses of spherical
contact. The proposed model shows very good agreement when compared with the FE-simulations.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The mechanical problem of contact between two bodies is
of substantial importance in many technical applications, for
instance wear of machine components, indentation testing and
compaction of powders, the latter feature being of most immedi-
ate interest presently. An accurate description of both the normal
and tangential contact behavior is needed in order to derive
reliable predictions in all of these subjects. However, the under-
standing of tangential contact, and especially tangential contact in
combination with plasticity, is much less developed than for the
corresponding case of normal contact.

The problem of normal contact of elastic bodies is well under-
stood since the end of the nineteenth century from the Hertz
contact theory [1]. The problem of contact between inelastic solids
is much more involved and the development has mostly been
driven by the interest of evaluating data from indentation testing.
Two of the most important contributions regarding this feature
were presented by Johnson [2,3] who found that the outcome of
an indentation test can fall into three different regimes, level I,
level II and level III, with different behavior of the normalized
hardness H defined as

H ¼ F
Aσrep

ð1Þ

where F is the indentation force, A is the projected contact area
and σrep is the yield stress at a representative value of the effective
plastic strain, εrep. According to Tabor [4], εrep ¼ 0:2a=R where R is
the radius of the indenter and a is the radius of the projected
contact surface. Indentation tests of different materials can be
correlated using a parameter Λ, at spherical indentation defined as

Λ¼ E
ð1�ν2Þσrep

a
R
: ð2Þ

A sketch of the behavior of the hardness as a function of Λ is
shown in Fig. 1. In the level I regime, the elastic effects are dominant
and contact can accurately be described by Hertz theory [1]. In the
level III regime, elastic effects are negligible and the contact behaves
in a rigid-plastic manner characterized by a constant normalized
hardness. By utilizing self-similarity arguments, Biwa and Storåkers
[5] and Storåkers et al. [6] were able to derive semi-analytical
solutions for the contact force as a function of indentation depth.
The derived relations have successfully been used in micromecha-
nical analyses of powder compaction using both analytical [7–10]
and numerical (discrete element) methods [11–15]. Finally in the
intermediate regime, level II, neither elastic nor plastic effects can
be neglected and self-similarity cannot be relied upon. However, a
semi-analytical treatment for deriving force–displacement relations
is still possible, Olsson and Larsson [16]. The understanding of
the normal contact behavior in all three regimes has been further
developed by extensive finite element calculations, pertinent to a
wide range of materials, by Mesarovic and Fleck [17,18] and later
Olsson and Larsson [19]. However, similar studies regarding tan-
gential contact are rare in the literature. It should be noted that the
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behavior in Fig. 1 is valid only for small deformations, at larger
contact radii than a=R40:1, the normalized hardness drops due to
large deformation effects.

When analyzing the tangential contact behavior, the problem
becomes more complex due to the fact, first of all, that axi-
symmetry does not apply and, secondly, the possible coupling
between the contact pressure and the frictional shear stresses.
However, for elastic contacts this coupling is generally small.
Accordingly, by assuming that the normal pressure and the shear
stresses are uncoupled, Cattaneo [20] and Mindlin [21] indepen-
dently derived formulae for the tangential force as a function of
the tangential displacement at constant and varying normal force.
Further on, these authors found that the contact region is divided
into two zones, in the center 0rrrc, the contact is in stick
condition with zero relative displacement of the contact surfaces
whereas in the outer area crrra the contact is in slip condition
where the shear stresses, qðr;θÞ is given by Amonton´s law as

jjqðr;θÞjj
pðr;θÞ ¼ μ ð3Þ

At increasing tangential load, the radius of the central stick zone
decreases and when the norm of the tangential force jjFT jj has
reached the limiting Coulomb friction value μFN , the whole contact
area is in a sliding condition.

As mentioned earlier, tangential contact between two elastic–
plastic bodies is far less studied (than the corresponding normal
problem) in the literature and due to the complexity of the
problem, any analytical treatment becomes problematic. Due to
the size of the problem, it is only during the last few decades that
it is has been possible to investigate tangential contact between
spheres using the finite element method. The latter feature comes
from the fact that axi-symmetry does not prevail and the problem

of having a non-constant contact area necessarily leading to a
dense mesh in a large region. However, as investigated by Larsson
and Storåkers [22,23], when the material is described by power-
law creep, the problem can, due to self-similarity, be reduced to
the problem of a flat cylindrical punch indenting a half space. The
benefit of using such an approach is that the contact region
becomes stationary and thus the number of elements in the finite
element mesh can be drastically reduced. However, the results
derived by Larsson and Storåkers [22,23] are not directly applic-
able in the present case as elastic–plastic material behavior is at
issue as well the influence from large deformations. Furthermore,
it can be concluded that studies involving full 3D simulations
of elastic–plastic tangential spherical contact [24–27] often focus
on one specific type of material, for instance linear hardening or
assuming that the whole contact area is in stick condition.

Accordingly, based on the above mentioned, the aim of the
present work is to investigate how the tangential and normal
forces varies with increasing tangential displacement at elastic–
plastic contacts. In particular, the intention is to derive formulae
that are relevant and useful for implementation of the elastic–
plastic tangential contact behavior in a micromechanical analysis
of powder compaction. The solution by Catteano [20] and Mindlin
[21] forms the basis of the investigation but is presently extended
to elastic–plastic contacts. Wear is an obvious area of application
remembering that a large part of the results concerns the evolu-
tion of tangential and normal forces during sliding motion. In this
study, the finite element method will be heavily relied upon due to
the complexity of the problem.

2. Problem formulation

The problem studied in this work concerns a deformable elastic–
plastic sphere with radius R, compressed against a rigid plane with
a normal force FN0 resulting in an indentation depth of h0 and a
contact radius a0. In a second step, a shear force FT is applied while
keeping the normal indentation h0 constant, resulting in a tangen-
tial displacement δT . It is assumed that friction locally can be
modeled with Coulomb friction, i.e. the maximum value of the
shear stress, q, at the contact surface is given by q¼ μp with p being
the normal pressure. A sketch of the problem setup is shown in
Fig. 2. Due to symmetry, this problem is also pertinent to contact
between two equal spheres.

Nomenclature

A Contact area
a, a0 contact radius, contact radius prior to shearing
E Young's modulus of sphere
F indentation force
FN, FN0, FNslip normal force on sphere, normal force prior to

shearing, normal force at full slip
FT, FT tangential force, tangential force vector
f correction function in calculation of δTslip

fN, fT normalized functions for describing the normal force
and the tangential force

G shear modulus of sphere
H normalized hardness
h, h0 normal indentation, initial normal indentation
kT, kT0 tangential stiffness, initial tangential stiffness
M, N exponents in the description of fN(x)
m power-law hardening exponent

n exponent describing fT(x)
q, q contact shear stress, contact shear stress vector
R radius of sphere
r radial coordinate
x normalized tangential displacement δTslip

y normalized parameter for calculating δTslip

δT , δT tangential displacement, tangential displacement
vector

δTslip tangential displacement at full slip
ε true uniaxial strain
εrep representative strain
θ circumferential coordinate
Λ Johnson parameter
μ Coulomb coefficient of friction
ν Poisson's ratio of sphere
σY ,σ0 initial yield stress, hardening parameter
σ Cauchy uniaxial stress
σrep representative yield stress

Fig. 1. Normalized hardness H as a function of ln Λ. The three levels of indentation
responses I, II and III are also indicated.
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