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a b s t r a c t

Multi-body-system (MBS) simulation is widely used in the railway industry. One of its major topics is the
assessment of rolling contact fatigue (RCF). This damaging process is linked to plasticity. MBS wheel–rail
contact models usually neglect plasticity as it does not change the vehicle behaviour. With the proposed
method, contact stresses are consistent with a perfect plastic law. This new method has been recently
detailed: it is an extension of the STRIPES semi-Hertzian (SH) model. A multi-Hertzian (MH) variant is
here described, which is less exact but faster than the SH method. This new method has been
implemented in a MBS package without resulting in a much longer execution time than elastic models.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multi-body-system (MBS) simulation has been used in the
railway industry for decades. A key feature of railway MBS
packages is the modelling of the wheel–rail contact [1]. In railway
dynamics, one of the major subjects is the assessment of rolling
contact fatigue (RCF). This damaging process is linked to plasticity.

In MBS packages, contact stress derivation is usually based on
Hertz and Kalker's theories that both imply an elastic behaviour.
Consequently, MBS calculations may provide unrealistically high
stresses well above the yield limit.

The goal is here to derive contact stresses that are consistent
with a perfect plastic law. A new model has been described in
Sebès et al. [3]: it is an extension of the STRIPES semi-Hertzian
model (SH) presented by Ayasse and Chollet [4], based on Kik and
Piotrowski [10]. The scope of this paper is a multi-Hertzian (MH)
variant, which is less exact but faster.

In Section 2, the MH method is described in its original form. The
modifications in the MH method, in order to take plasticity into
account are described in Section 3. The new model is benchmarked
versus finite element method (FEM) in Section 4. Realistic application
examples in wheel–rail contact are displayed in Section 5.

2. Multi-Hertzian (MH) method

2.1. Recall of Hertzian theory

The classical Hertzian contact is determined on the basis of the
curvature ratio λ¼A/B with
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where Rwyy, Rwxx and Rrxx are the radii of wheel and rail. The
curvature of rail around y is zero, x being the rolling direction.
Radii are positive if the centre of curvature is inside the material. A
Hertzian geometry meets following assumptions: constant curva-
tures and contact patch small compared to characteristic dimen-
sions. The Hertzian ellipse has semi-axes a and b
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where N is the force pressing the wheel against the rail in the
z-direction; E is Young's modulus; v is Poisson's ratio; n and m are
Hertz functions of λ tabulated in [2]: their expression may be
found in Ayasse and Chollet [4]. The aspect ratio of the Hertzian
ellipse λH¼b/a is

λH ¼ n
m

ð4Þ

2.2. Interpenetration in a Hertzian geometry

Let h be the virtual interpenetration defined by

h¼ ho�ðzw�zrÞ ð5Þ

where zw and zr are respectively the wheel and rail profiles in the
y–z plane. If profiles are in geometrical contact (N¼0), zw–zr is
zero at the contact point and positive elsewhere. The maximum
interpenetration, ho, is unknown in the problem. To find the
proper value of semi-axis b in y-direction, ho should be (Fig. 1)

ho ¼ b2B ð6Þ
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The intersection of the interpenetrated wheel in the rail is an
ellipse. Its equation is given by setting h¼0

Ax2þBy2 ¼ ho ð7Þ
The elastic Hertzian stiffness ke, expressed in N/m3/2, is

deduced from expressions (3) and (6)

N¼ keho
3=2 ke ¼ 2
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This expression enables to solve the normal problem with a multi-
Hertzian method, abbreviated MH. Note that an important matter
in a MH method is the selection of the number of potentially
contacting ellipses. This selection is made a priori. If only one
potential contact is chosen, this leads to wrong results in the case
of multiple contacts. Conversely, if too many ellipses are selected,
patches are likely to overlap, which is also unrealistic. This topic is
developed in the following section.

2.3. Selection of potential ellipses

Rail profile (yr, zr) is discretised in strips: their location, angle
and curvature 1/Rrxx are stored in tables. Let tY be the lateral
position of the wheel relatively to the rail, tY being zero if the
wheelset is centred in the track and flange contact occurring at a
positive tY. For a given tY and a given strip, zw�zr, the relative
vertical gap between the wheel and the rail, the wheel angle
and its curvature 1/Rwxx are also tabulated. Every parameter
used in Section 2.2 may be deduced from interpolation of tables
over tY if the roll of the wheelset is neglected. It enables to solve
the normal problem with the SH method as described by Ayasse
and Chollet [4]. The same tables may be used to solve the
normal problem with the MH method: the only change consists
in considering interpenetration only at strips associated to
ellipses and applying expression (8). The method of selection
is based on the contact angle function: CAF [13,14]. Let γ be the
contact angle in geometrical contact at a given tY: function γ (tY)
is called CAF. The following relationship between radii and γ is
verified:

RwxxþRrxx ¼ � 1
cos γðdγ=dtY Þ

ð9Þ

In a Hertzian geometry, radii are constant and so should be the
term in the right side of previous expression. It follows that a
discontinuity in CAF implies a change of ellipse: this criterion will
be used. As an example, Fig. 2 shows CAF of the left wheel–rail
profile of the Manchester benchmark [12]: 4 potential ellipses are

found with this criterion. Theoretical profiles exhibit locally
constant radii: as a consequence, for low contact angles, expres-
sion (9) implies that the slope of CAF is nearly piecewise constant.
The unique strip at which geometrical contact occurs at a given tY
may be called the main strip. As an example, if the wheel is at
tY¼5 mm, the main strip will be associated to ellipse # 2 (circular
marker in Fig. 2). Main strips linked to nearest tY of other ellipses
(other markers of Fig. 2) will be considered for multi-contact. They
are shown in Fig. 3.

2.4. Multi-Hertzian normal contact

In this section, subscript i is added to parameters in order to
indicate they are linked to ellipse # i. Omitting tangent forces, the
normal wheel–rail contact may be stated as follows: at a given
wheel position tY, a vertical force Q being applied to the wheel, the
vertical interpenetration δz between wheel and rail is searched in
order to meet the following equilibrium:

∑
i
Ni cos γi ¼Q ð10Þ

The vertical interpenetration δz between wheel and rail is
linked to the normal one hoi by a geometric relation

hoi ¼ ðδz�ðzwi�zriÞÞ cos γi ð11Þ
where zwi�zri are lengths indicated with thin vertical lines in
Fig. 3, except an offset has been applied to ease its understanding:
zwi�zri is zero at the main strip. If hoi is negative, Ni is zero.
Otherwise its value is given by expression (8), with subscript i
added to every parameter. The difference in elapsed time between
SH and MH methods lies only in the fact that summation (10) is

Fig. 1. Hertzian geometry – virtual interpenetration of profiles (top) and Hertzian
and intersecting ellipses (bottom).

Fig. 2. CAF – left wheel–rail profile of Manchester benchmark.

Fig. 3. Rail strips linked to ellipses if wheel is at tY¼5 mm.
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