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a b s t r a c t

To be able to predict tribological properties of new lubricant additives as well as clarify lubricating

mechanisms, one needs to study the relationship between structures of lubricant additives and their

lubricating properties. With a focus on estimating antiwear properties of some heterocyclic additives,

we use the quantitative structure tribo-ability relationship (QSTR) model to predict tribological data,

which introduces the idea of computer-aided design into tribology. This is combined with back

propagation neural network (BPNN), a machine-learning method that offers simplicity and robustness.

This study determined the feasibility and predictability of developing the BPNN QSTR model to

estimate lubricant additive antiwear properties. For 36 additives, 90 structural descriptors, such as

octanol-water partition coefficient, quantum indices, 2D topological indices, and 3D Jurs descriptors,

were included as BPNN inputs. Antiwear parameters include wear-scar diameters under three loads.

Leave-one-out cross-validation was performed to evaluate accuracy and robustness of this BPNN QSTR

model. We also evaluate the descriptor sensitivities, from which we can determine the effects of each

descriptor and clarify wearing mechanisms. Given a positive assessment, this method warrants further

development and validated integration with other tribological properties.

Crown Copyright & 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

Exploring the relationship between chemical structures and
properties has been a puzzling but interesting problem for
chemists over the years. Using the linear regression method,
Hansch et al. [1] revealed a relationship between quantitative
structural descriptors and molecular properties, and thereby
established predictive models of these properties. Quantitative
structure–activity relationship (QSAR) models emerged and have
been in wide use ever since. During development, the QSAR
method advanced in two directions: one extending the QSAR
descriptors from initially electronic, spatial geometry, and lipid–
water partition characteristics, to include quantum [2], topology
[3–5], and 3D-QSAR [6] characteristics that revealed more subtle
structure and conformation information; the other introducing
new methods to build QSAR models. From simple linear regres-
sion, QSAR methods incorporated machine-learning methods
such as artificial neural network [7], partial least square (PLS)
[8], and support vector machine (SVM) [9].

In recent years, QSAR has gradually extended to other areas of
applications including tribology. However, studies on the depen-
dence of tribological properties on molecular structure are sparse,
with only a few available reports. The tribological performance
and structure of ionic liquids has been studied by Weimin Liu’s
team [10,11] and by Jiménez’s team [12], and tribological proper-
ties of hydrocarbons were also investigated by Himmat Singha
et al. [13].

This paper presents the new notion of a quantitative structure
tribo-ability relationship (QSTR) with the aim of building a
predictive BPNN model for anti-wear-scar properties, and to
explore lubrication mechanisms. QSTR uses methods and descrip-
tors from QSAR to build a predictive model for tribological
properties. For the present study, we chose the back propagation
neural network model (BPNN), which is a classic neural network
method known for its simplicity and robustness. The BPNN model
(Fig. 1) comprises three layers of neurons: input, output, and
hidden. The most important is the hidden layer which provides
the key transformation and generates an output value [14]. We
chose quantum, 2D topological, and 3D Jurs descriptors as vari-
able inputs to the model. These descriptors are well known for
their good performance in the prediction of physical properties of
compounds [2–5,15].
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2. Material and methods

A set of 36 compounds and their tribological data were
examined [16]. Data included wear-scar area of compounds under
three loads: 196, 294 and 392 N. Wear-scar area is used to
determine molecule lubricity at the optimal concentration by
the simple expression:

WS 196 Nð Þ ¼ log10
S0 �MW

S� Conc
, ð1Þ
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S0
3=2
�S3=2
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where WS(L) expresses the compound’s ability to decrease wear-
scar area for load L; S0 is the negative control, which is the wear-
scar area formed under pure base paraffin oil; S is the wear-scar
area formed using the lubricant compound; MW is the molecular
weight of compounds; and Conc is the concentration of the
compound to obtain the best lubrication.

The structures of 36 compounds were generated using the
Discovery Studio software package; molecular energies were
minimized and charges calculated by standard methods. QSAR
descriptors included ALogP, quantum descriptors, two-dimensional
(2D) topological descriptors and three-dimensional (3D) Jurs
descriptors. AlogP is a descriptor determined by liposolubility of
compounds, whereas quantum descriptors include energies for
HOMO (highest occupied molecular orbital) and LUMO (lowest
unoccupied molecular orbital), heat of formation, dipole and
quadrupole moments, and so on. Dipole and quadrupole descrip-
tors indicate the strength and orientation of molecules in electro-
static fields, and indicate the polarity in the three-dimensional
compound. In the presented study, quantum descriptors were
calculated by density function methods.

Topological descriptors are a special class of descriptors that
do not rely on three-dimensional models. Values of 43 descriptors

derive from the two-dimensional topology of the molecule.
Topological descriptors indicate graph properties and side-chain
characteristics of molecules [4]. Jurs descriptors combine shape
and electronic information to characterize molecules [15]. The 30
descriptors are calculated by mapping atomic partial charges on
solvent-accessible surface areas around individual atoms.
Tables 1 and 2 list all topological and Jurs descriptors.

The predictive models, also built in Discovery Studio, imple-
ment a particular type of neural network known as a back-
propagation neural network (BPNN), a training method that
back-propagates errors of the units of the output layer in
determining the errors for the units of the hidden layer. The
neuron number in the hidden layer (middle layer) was optimized
by the software itself. For all predictive models, the optimal
neuron number in the hidden layer is 3, which effectively
prevents overfitting. Cross-validation was performed using the
leave-one-out (LOO) method. For all models, six compounds were
selected randomly to compose the test group. Because inputting a
plethora of descriptors would lead to overfitting, we established
two BPNN models for WS under each load, one based on input

Fig. 1. Scheme of a typical BPNN. (a: Output vector; p: Input vector (R¼Number of

element in input vector); W: weight; b: intercept vector; n: number of neurons in

hidden layer; f: transfer function).

Table 1
Topological descriptors.

Descriptors Explanation

JX, JY Balaban indices

Wiener Wiener index

Zagreb Zagreb index

CHI_0, CHI_1, CHI_2, CHI_3_P, CHI_3_C, CHI_3_CH, CHI_V_0, CHI_V_1, CHI_V_2, CHI_V_3_P, CHI_V_3_C, CHI_V_3_CH Connectivity indices

IC, BIC, CIC, SIC, IAC_Total, IAC_Mean, V_ADJ_mag, V_DIST_mag, V_ADJ_equ, V_DIST_equ, E_ADJ_mag, E_DIST_mag, E_ADJ_equ,

E_DIST_equ

Graph-theoretical info Content

descriptors

Kappa_1, Kappa_2, Kappa_3, Kappa_1_AM, Kappa_2_AM, Kappa_3_AM, PHI Kappa shape Indices

SC_0, SC_1, SC_2, SC_3_P, SC_3_C, SC_3_PC Subgraph counts

Table 2
Jurs descriptors.

Descriptors Explanation

Jurs_PPSA_1 Partial positive surface area

Jurs_PNSA_1 Partial negative surface area

Jurs_PPSA_2 Total charge weighted positive surface area

Jurs_PNSA_2 Total charge weighted negative surface area

Jurs_PPSA_3 Atomic charge weighted positive surface area

Jurs_PNSA_3 Atomic charge weighted negative surface area

Jurs_DPSA_1 Difference in charged partial surface areas

Jurs_DPSA_2 Difference in total charge weighted surface areas

Jurs_DPSA_3 Difference in atomic charge weighted surface areas

Jurs_FPSA_1

Fractional charged partial surface areas

Jurs_FPSA_2

Jurs_FPSA_3

Jurs_FNSA_1

Jurs_FNSA_2

Jurs_FNSA_3

Jurs_WPSA_1

Surface-weighted charged partial surface areas

Jurs_WPSA_2

Jurs_WPSA_3

Jurs_WNSA_1

Jurs_WNSA_2

Jurs_WNSA_3

Jurs_RPCG Relative positive charge

Jurs_RNCG Relative negative charge

Jurs_RPCS Relative positive charge surface area

Jurs_RNCS Relative negative charge surface area

Jurs_TASA Total hydrophobic surface area

Jurs_TPSA Total polar surface area

Jurs_RASA Relative hydrophobic surface area

Jurs_RPSA Relative polar surface area

Jurs_SASA Total molecular solvent-accessible surface area
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