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a b s t r a c t

In two body abrasion processes hard asperities plough through a soft surface. If the asperities can resist

the forces that act on it, scratches will develop in the soft material. If the asperities cannot withstand

these forces, they will break off and not cause direct abrasion damage. The same is the case for galling,

where lumps develop on one of the surfaces because of material transfer. These lumps will abrade the

counter surface, if the lumps are strong enough to withstand the forces that act on it. In order to

describe these phenomena, simple criteria are desired to describe the mechanical stability of asperities

and lumps.

In this work, an analytical model is presented for the mechanical stability of asperities. In the

analysis, a pyramidal asperity shape will be assumed. Given the pyramidal asperity shape, several cases

will be studied: the load is carried by a pyramid with a triangular base, a pyramid with a triangular base

and an extended backside and the case where a crack has developed. Based on these models stability

criteria of ploughing pyramidal asperities will be developed. Important results of the model will be

discussed in the context of abrasion and adhesive wear processes.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Two body abrasion is a very common wear process in which
harder asperities plough through a softer surface. Also in some
adhesive wear processes harder asperities plough through a softer
counter surface. Here, in time, ploughing asperities can grow and
develop into larger lumps due to adhesion or mechanical locking
of soft material into the surface roughness of the harder surface.
The transferred material work hardens and can cause scratches in
the countersurface. In particular when high lumps can develop,
scratches will be formed on the product due to abrasion. An
example of such an adhesive wear process followed by subse-
quent abrasion, is galling in a deep drawing process. In the case of
galling, the geometry of the developing lumps will determine the
depth and width of the scratches which develop due to ploughing.
Because galling can be detrimental for the surface quality of the
products being made, it is important to control it in industrial
practice. The main difference with two body abrasion is that in
this case the shape of the ploughing asperity is not fixed before-
hand, but dependent on the growth behaviour of the transferred
material on the asperity.

Modelling of abrasive wear has often started with analysing a
single asperity ploughing through a soft and flat substrate.
Analysis of single ploughing asperities is then extended to rough
surfaces by summing up these unit events, see e.g. [1,2]. In such
models, single asperity behaviour as discussed above is typically
used and applied to multi asperity contacts. Further, it is typically
assumed that the asperities are rigid, so strong enough to with-
stand the forces that act on them during ploughing. Several
reasons exist which limit the validity of the assumption of a rigid
asperity and therefore neglect failure of the asperity. Single
asperity ploughing has been extensively studied in experiments
as well as in models. An overview of many studies is given in [3].
Much of the work on ploughing asperities has been restricted to
2D situations. Important is the work described in [4] where
ploughing of 2D wedges is modelled by means of slipline models.
Using these models, three slipline fields have been defined,
identified with the names: wave formation, wave removal and
cutting. Depending on the attack angle of the wedge and the
strength of the interface between the wedge and the deforming
material, the wedge will operate in a certain mode. The transi-
tions between these regimes have been related to wear modes of
spherical asperities by Hokkirigawa and Kato [5]. There, on the
basis of experiments and a comparison with the slipline models of
Challen and Oxley [4] a wear mode diagram is constructed in
which three wear modes are distinguished: ploughing, wedging
and cutting. This diagram is schematically depicted in Fig. 1 and
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will be discussed further. The transitions between the cutting
regime and the other regimes are approximately given by the
following equations, see also [6]:

y¼ 0:25ðp�arccosf HK Þ ð1Þ

And the boundary between the ploughing and wedging regime
is given by:

y¼ 0:5arccosf HK ð2Þ

In these equations, y is the attack angle of the sliding wedge and
fHK¼t/k, where t is the shear strength of the interface at the
ploughing wedge and k is the shear strength of the soft plastically
deforming counter surface. These equations are represented by
the solid lines in Fig. 1. The dotted line is the exact boundary
between the regimes which follows from [7]. It can be seen that
the approximate relation is indeed very close to the exact
solution. Next to ploughing wedges and spherical tips, ploughing
cones [8] and pyramidal indenters [9,10] have also been analysed
using the upper bound method. However, slipline models have
some restrictions originating from the model assumptions. The
most important restrictions are the neglect of elastic effects and
the assumption of pure plastic material behaviour. So, at very
small contact angles no ploughing is expected but elastic beha-
viour. In [16,17] limits due to elasticity have been analysed when
indenting a plastically deforming substrate with a symmetric
rigid wedge. If the criterion is applied to steel, elastic effects can
be expected at attack angles lower than 181 for wedge shaped
indenters. The criterion in fact represents the strain in the
material due to indenting. When the results in the ploughing
regime are compared with elastic–plastic FEM calculations,
slipline solutions only give good results for attack angles higher
than approximately 51 see [11]. The reason is that much higher
strains than predicted by the slipline models develop close to the
surface in the case of a ploughing wedge.

Secondly, failure of the ploughing tip itself can occur when
sliding against a softer surface due to mechanical overloading
despite its higher hardness. In [18,19] criteria are derived in terms
of a critical tip angle for the sliding wedge and the hardness ratio
between the sliding wedge and the softer flat.

Some of the basic assumptions like ideal plasticity of the soft
surface and rigid behaviour of the hard asperity can be avoided
using FEM models of ploughing asperities, one of the first being
[11]. Later a single asperity moving over a countersurface has
been simulated using meshless methods [12–15]. In these simu-
lations, aspects like deformation of the ploughing asperity and
material transfer to the ploughing asperity have been observed.

In this work, stability of pyramidal shapes will be investigated
when ploughing through a plastically deforming material, using
analytical models.

2. Modelling failure of asperities

2.1. Stress analysis for a simple triangular pyramid

Starting from a pyramidal asperity with a four sided base, only
the front half will be in contact with the plastically deforming soft
surface. The resulting geometry is a simple triangular pyramid
loaded with forces due to the ploughing action of faces BCD and
ACD as depicted in Fig. 2. If, only the front half of the four sided
base supports the ploughing asperity, the asperity is supported by
face ABC. Before discussing more complex situations, first this
simple geometry will be analysed further.

The points B and D are respectively the extremes of the width
w and the height h. The velocity vector of the moving soft counter
surface relative to the fixed asperity is assumed to be acting in the
negative x-direction. If a scratch is formed due to the ploughing
action, behind the plane ADB no contact is expected. In reality the
internal stress distribution is also dependent on the rear part of
the asperity as will be discussed later. In the following, it will be
assumed that the asperity is stationary and rigid with a plane of
symmetry in the xz-plane. The asperity is loaded on face BCD (and
because of the symmetry on face ACD) because of the ploughing
action. Further, the rigid asperity is supported by face OBC (and
because of the symmetry face OAC). In the analysis, the pressure
pBCD acting on face BCD will be called ppl. ppl is assumed to be
constant over the whole contact area and directed inward normal
to plane BCD. The tangential shear stress tpl is calculated using a
Coulomb friction law, so tpl ¼ mppl

.
The geometry of the asperity is completely defined by w, h and

the length l or in the dimensionless form, normalizing by l, two
geometrical quantities remain

h¼
h

l
ð3Þ

w¼
w

l
ð4Þ

The coordinates of three points B, D and C are respectively given
by (0, w, 0), (0, 0, h) and (l, 0, 0). These points describe a plane,
which has the unit normal vector which will be denoted by nBCD.
The area of the triangle BCD is called ABDC, and the area of triangle
ABC is called AABC are given by

ABDC ¼ 1=29BD� BC9¼ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwhÞ2þðhlÞ2þðlwÞ2

q
ð5Þ

n
!

BDC ¼
ðwh, hl, lwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðwhÞ2þðhlÞ2þðlwÞ2
q ð6Þ

AABC ¼wl ð7Þ

In the far field, the velocity vector is directed into the negative
x-direction. The vector t

!
is the tangent vector of BDC as close as

possible to the direction of the plastic flow in the far field, so
x
!

U t
!

has to be minimum. To minimize x
!

U t
!

, vector t
!

has to be

Fig. 1. Wear mode diagram according to Hokkirigawa and Kato [5].

Fig. 2. Tip geometry with its dimension and flow lines on BDC of plastic deforming

material.
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