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a  b  s  t  r  a  c  t

This  study  considers  the  approaches  of  Blok  and  Jaeger  for  the  estimation  of  maximum  and  average
temperatures  in  sliding  elliptical  contacts  with  both  uniform  and  semi-ellipsoidal  (Hertzian)  heat  distri-
butions.  The  accuracy  of each  of  these  methods,  which  are  based  on  single-point  temperature  matching
between  contacting  bodies,  is  assessed  relative  to a  numerical  solution  of the  heat partition  problem
developed  in  a  previous  work,  which  imposed  temperature  matching  at  all nodal  points.  Comparisons
are  made  for  a wide  range  of  Peclet  numbers,  as well  as  for moderate  ranges  of  thermal  conductivity  ratio
and  elliptical  ratio.  It  is  found  that  the  application  of  Blok’s  hypothesis  yields  remarkably  accurate  predic-
tions  of  the  maximum  interfacial  temperature,  with  typical  errors  less  than  3%,  whereas  the  hypothesis
of  Jaeger  leads  to predictions  of  the  average  interfacial  temperature  that  have  typical  errors  of  around  6%.
The authors  also  assess  the  accuracy  of approximate  formula  developed  by Tian  and  Kennedy  to  predict
the  maximum  temperature  at  the  interface  for  the  case  of  sliding  circular  contacts  and  find  the error
to be no  more  than  2.6%  for the  full  range  of  Peclet  number.  Further,  the  authors  of  the  current  study
use  fundamental  heat  source  solutions  developed  by  Tian  and  Kennedy  to  arrive  at  formulae  for  average
temperature  rise for circular  contacts  that  are  analogous  to  the  Tian  and  Kennedy  maximum  temperature
rise formulae.  It is  found  that  the  formulae  for computing  the  average  interfacial  temperature  rise are
also  quite  accurate,  but have  slightly  more  error  than  the  maximum  temperature  rise  formulae.  Finally,
in the  present  work,  extensions  are  suggested  to the  maximum  and  average  temperature  rise formulae
of Tian  and  Kennedy  to  include  the  effects  of elliptical  contact  geometry.  It is  found  that  these  formulae
are  at  least  91%  accurate  for elliptical  ratios  between  0.4  and  5.0.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Tribological and material behaviors of two bodies sliding against
each other are greatly influenced by the temperature rise at the
interface. This temperature rise depends on several factors such
as load, sliding speed, frictional force, surface topography, thermal
properties of the materials in contact, lubrication condition, and
presence of other sources of heat transfer from the interface. Accu-
rate prediction or estimation of the interface temperature rise is
important for performing thermal stress analysis between two  slid-
ing bodies [1–3] and modeling thermal wear [1,2], both of which
are relevant to many applications, such as machine tools [3,4],
brake pads [5],  gear teeth [6],  and wheel–rail contacts [7].  In any
case, a prediction of the maximum and/or average steady-state
temperature rise at the interface of two sliding bodies can be valu-
able in designing against fatigue failure or other modes of system
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breakdown. For effective design of machine components, knowl-
edge of the maximum and/or average interface temperature
becomes important, as does the ease of being able to compute the
same.

Blok [8] provided equations for computing maximum tempera-
ture rise due to circular uniform and paraboloidal (Hertzian contact
pressure) heat distributions applied to a circular contact region,
as well as for a uniform heat distribution applied to a square
region. For computing interface temperature rise, Blok approxi-
mated the condition of continuity of temperature at the interface
by equating the steady-state maximum temperature rise of both
the bodies at the interface. That is, a total interfacial heating
rate, attributed to frictional dissipation, is partitioned between
the stationary and moving bodies so that the associated maxi-
mum  temperature rises – as per the respective stationary and
moving heat source models – are the same for each body. The
notion that a good estimate for the maximum temperature rise
can be found from Blok’s approach to temperature matching will
hereon be referred to as “Blok’s hypothesis”. Blok assumed that
at low Peclet numbers the maximum steady state temperature is
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independent of the sliding speed and thus used the expression for
the maximum temperature due to a stationary heat source to calcu-
late the temperature rise at the interface. For high Peclet numbers,
Blok suggested that the heat flow in the direction transverse to the
sliding direction will be negligible and the square heat source can
thus be approximated as an infinitely long band source. For inter-
mediate Peclet numbers, Blok curve fitted the results of numerical
integration to approximate the maximum temperature rise in the
contact.

Jaeger [9] provided approximate equations for average tem-
perature rise due to square and band shaped heat sources for
very low Peclet numbers (<0.1) or for very high Peclet num-
bers (>10). For intermediate Peclet numbers Jaeger, like Blok,
provided curve fit solutions for average and maximum tem-
perature rise. Although band shaped contacts may  be good
approximations of several engineering contact regions, such as
in meshing gear teeth and in a tool–chip interface, elliptical
and circular contacts are more commonly seen in engineering
applications.

Carslaw and Jaeger [10], in their classical book on heat conduc-
tion, provided equations for computing temperature rise due to
heat sources with different shapes and heat distribution under both
static and dynamic conditions.

Kuhlmann-Wilsdorf [11,12] modified the equation for maxi-
mum  temperature rise put forth by Blok [13] to include the shape
factor for elliptical contacts and used it to compute flash tem-
perature due to friction and Joule heating. Kuhlmann-Wilsdorf
used Jaeger’s solution to derive a curve fit equation represent-
ing the dependence of maximum temperature on sliding velocity,
and used the same reasoning to form approximate expressions for
shape factor relating elliptical ratios with sliding velocity. However,
Kuhlmann-Wilsdorf noted that the shape factor relation could not
be accurately applied to elliptical geometry and hence limited her
discussion to circular shaped contacts. Later on Kuhlmann-Wilsdorf
[14,15] used those equations to determine flash temperatures in
plastic contacts by accounting for changes in hardness due to flash
temperatures.

Greenwood [16] put forth several interpolation formulae to cal-
culate the maximum temperature rise in a body due to moving heat
sources of circular, square and band shapes. Tian and Kennedy [17]
presented solutions of temperature rise in a semi-infinite body due
to uniform heat sources applied over circular and square regions
and an ellipsoidal heat source applied over an elliptical region. In
order to obtain the heat partition, they used Blok’s approach of
equating the maximum surface temperatures of both the bodies in
the contact region.

Bansal and Streator [18] presented curve fit equations for com-
puting maximum and average interface temperature in Hertzian
contacts over a wide range of Peclet numbers, thermal conduc-
tivity ratios and elliptical ratios. These equations were based on
fitting algebraic equations to numerical solutions of the heat par-
tition problem, whereby the temperatures of the contact surfaces
were matched at all nodal points [19]. A more comprehensive liter-
ature review on thermal analysis of interface temperature rise can
be found in [19,20].

In the current study, we assess the accuracy of several means
of estimating temperature rise of sliding contacts, including the
hypotheses of Blok and Jaeger as well as the approach of Tian and
Kennedy [17]. These methods represent much simpler approaches
than that of Bansal and Streator [18] (and erratum [21]), in that they
involve the matching of only one temperature value in the interface
(i.e., either the maximum temperature or the average temperature),
whereas, in Bansal and Streator there is temperature matching at
all nodal points in the interface. It is of particular interest to assess
the extent to which the simpler methods can be used with accept-
able accuracy. It is noted here that the following application of the

Blok hypothesis corrects that presented in a previous paper by the
authors (see erratum [22]).

2. Interface temperature rise model

Bansal and Streator in [19] presented a least squares
regression-based method for obtaining the steady-state temper-
ature distribution at the interface of two  sliding bodies, whose
initial uniform temperatures may  be the same or different. Both
uniform and Hertzian contact pressure distributions were consid-
ered, which made the analysis applicable to both elastic and plastic
contact pressures. Integral equations were developed expressing
the temperature distribution of each body in terms of an unknown
heat partition function. By assuming a polynomial form for the heat
partition function and optimizing the coefficients to obtain the least
squares difference in temperature at the interface between the two
bodies (considering all nodal points in the interface), an estimate
for the heat partition function was obtained.

For the sake of brevity, here only key equations are presented
while readers are encouraged to visit [18,19] for a complete
analysis. The definitions of the variables used here are same as
those in [18]. The temperature distributions at the surface of two
semi-infinite bodies sliding against each other with same initial
temperatures (Ti) are given as [10]

T1(x, y) = 1
2�k1

∫ ∫
q1(x′, y′)√

(x − x′)2 + (y − y′)2
dx′ dy′ + Ti (1)

T2(x, y) = 1
2�k2

∫ ∫
q2(x′, y′)

×
exp

{
−(U/2˛2)(

√
(x − x′)2 + (y − y′)2 − (x − x′))

}
√

(x − x′)2 + (y − y′)2

× dx′ dy′ + Ti (2)

Here, Body 1 is stationary while the Body 2 is sliding to right with
respect to Body 1, K1 and K2 are the thermal conductivities and ˛1
and ˛2 are thermal diffusivities of Body 1 and Body 2, respectively.
Also, q1 and q2 are the heat flow rates per unit area into Bodies 1
and 2, respectively; let q(x,y) be their sum or the total frictional heat
generated at the interface, such that:

q(x, y) = q1(x, y) + q2(x, y) (3)

The heat generation rate per unit area q at the interface due to
friction can be expressed as:

q = �pmU for uniform contact pressure

q = �pmU
3
2

√
1 − x2

a2
− y2

b2
for Hertzian contact pressure

(4)

where pm is the average contact pressure over the contact area, U
is the velocity of Body 2, a is the semi-axis in the sliding direction,
b is the semi-axis in the transverse direction, and � is the kinetic
coefficient of friction.

Now let the heat partition factor, �(x,y), between the two bodies
be defined as the ratio of the heat transfer into the moving body
(Body 2) at (x,y) to the total heat generated at (x,y), i.e.:

�(x, y) = q2(x, y)
q(x, y)

(5)

Now let

q(x′, y′) = qof (x′, y′) (6)
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