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A procedure is presented to generate three-dimensional (3D) random topography datasets with periodic
boundaries for the evaluation of surface metrology algorithms and original data for measurement stan-
dards. A non-causal two-dimensional (2D) autoregressive (AR) model, which expresses the surface as a
linear weighted summation of AR parameters and topography data in addition to a random noise compo-
nent, is applied to computationally generate 3D random topography data. By the use of an extension that
assumes periodic boundaries, the edges of the generated data become continuous across the boundaries.
It has been verified that the spectral properties are not affected by this extension. This technique offers
advantages for the evaluation of computational techniques for surface metrology, such as filtrations and
spectral analysis since the edge effect can be avoided by assuming periodic boundaries, and inherent
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Simulation effects of the techniques can be evaluated. In addition, for use as a random measurement standard for
Measurement standard instrument calibration, it is possible to simply arrange the generated data repeatedly in the measuring
Softgauge window similarly to floor tiles without introducing discontinuous edges at the boundaries of the data.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Recently, surface texturing has attracted the attention of tribol-
ogists since it can be used to dramatically improve friction and wear
without changing the materials and the lubricants [1-3]. Thus, the
importance of the evaluation techniques of surface texture, includ-
ing measurement and analysis, is growing, especially in regard
to areal three-dimensional (3D) textures. To ensure accuracy of
the measuring instruments, standard specimens are required. All
the instruments should be verified according to the international
standard to allow comparisons [4]. In addition, reference datasets
(softgauges) are needed to check the correctness of evaluation algo-
rithms. Softgauges as well as reference algorithms are described in
ISO 5436-2 [5].

For linear two-dimensional (2D) surface texture-measuring
instruments, calibration standards have been established and are
now available [6]. In addition, Blunt et al. developed softgauges
for line profiles [7]. Bui and Vorburger proposed an Internet-based
surface texture analysis system for algorithm verification [8,9].
However, areal calibration standards and softgauges have not as
yet been established.
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The reference data would be required following properties [10].

(1) Reference data should be generated by a defined logic.

(2) Reference data should have expected values of geometric and
statistic quantity.

(3) The logic should be capable of changing conditions such as data
size and intervals.

Moreover, softgauges should include randomness since topo-
graphical data extracted by measuring instruments has random-
ness more or less.

To fulfil these requirements, data generation techniques based
on statistical modelling are applicable. Patir [11], Bakolas [12] and
Manesh et al.[13] developed such a technique by using the 2D mov-
ing average (MA) model. Whitehouse [14] and Xingian and Yiyun
[15] proposed the causal 2D autoregressive (AR) model. Hu and
Tonder [16] applied the 2D finite impulse response (FIR) filter to
generate random 3D topographical data. Wu [17,18] and Pawlus
[19] studied the data generation by using FFT. The authors studied
anon-causal 2D AR model for the generation of datasets and found
that the resulting model is superior to a causal model in terms of
spectral properties [20].

In this paper, to establish a more convenient data generation
procedure, the concept of a periodic boundary is introduced into
the non-causal 2D AR model.
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Fig. 1. Schematic diagram of the non-causal 2D AR model.

2. Mathematical background and computational
techniques

2.1. Definition of non-causal 2D AR model

When the values of the ordinate height z(x,y) {x=0,1,...,Xn — 1,
y=0,1, ..., Y, —1} of the areal surface are assumed to be random
variables measured from the overall mean value, the non-causal 2D
AR model for z(x, y) is given as follows (see Fig. 1) [20].

2x,y)=Y Y i fex—iy—j)+a(x.y) (1
(i.j) €D
D=((iL.)(-m<i<m,-n<j<n),(ij)#(0,0) (2)

where ¢(i, j) is the AR parameter, a(x, y) represents random input, i
and j are integers, D is the region of regression and m and n denote
the order of the regression in the x and y direction, respectively.
Note that x and y are data numbers, not the coordinate values,
for simplification of equations below. The coordinate values are
given by multiplying data intervals, Ax and Ay, respectively. Let
us denote the matrix {¢(i, j)} as ®. The regression is expressed
by a liner-weight summation with the @ and height in the region
defined by D. It should be noted that D does not have to large
enough to cover the whole wavelength to be included in {z(x, y)}.
This model is an extension of the causal AR model in terms of the
region of regression. A comparison between the causal and the non-
causal model is illustrated in Fig. 2. In the case of the causal model,
a certain order (i.e. directionality) of x and y is assumed (Fig. 2(a)).
This unnatural directionality is excluded in the non-causal model
(Fig. 2(b)). By this extension, the estimation of @ becomes a non-
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Fig. 2. Differences in the region of regression between the causal (a) and the non-
causal (b) 2D AR model.
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Fig. 3. Example of ACC as defined in Eq. (3).

linear problem and the generation of {z(x, y)} involves the solution
of simultaneous equations [20]. Procedures of estimation and gen-
eration are detailed in Appendices A and B, respectively.

2.2. Specification parameters

The spectral properties of Eq. (1) can be specified by using the
following autocorrelation coefficient (ACC) C(tx, Ty)

Ct. ) = exp H <%>z+ (l%)z}w]

where 7y and 7y, are the lags and fx and By are the correlation dis-
tances in the x and y direction, respectively, and w is the power
index. As shown in Fig. 3, the ACC as defined in Eq. (3) has a value
of unity at the origin ((tx, Ty)=(0, 0), denoted as O in Fig. 3) and
decays with an increase in 7y and 7.

To clarify meaning of the various parameters, the cross-section
of the ACC in the direction of T, (denoted as OA in Fig. 3) is shown in

(3)
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Fig. 4. Effect of the power index w on ACC (a) and the respective power spectra (b) (8x =5 pum).
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