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a b s t r a c t

This work presents an analysis of the transient creep deformation of a hemisphere in contact with a rigid
flat, loaded by a constant force. The analysis is based on extensive finite element simulations, using a
Garofalo creep law. Motivated by the simulations, an analytical framework is derived. Starting from the
trivial case of a cylinder, the analytical framework can be generalized by exchanging a few functionals;
this will describe the spherical geometry under analysis. The necessary functionals are derived by using
a combination of analytical and empirical models. The resulting model accurately predicts the creep
evolution of arbitrary asperities for a wide parameter range, requiring only the bulk material parameters.
The results are interpreted in view of transient friction effects with creep as their possible cause.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The contact of an elastic-perfectly plastic hemisphere with a
rigid flat has been studied intensively in recent times (see [1–7]).
These models are usually studied from the perspective of the con-
tact and friction between rough surfaces. Here, the hemisphere
serves as a model for a contacting surface asperity or micro-
junction. Especially important in this context is the derivation of
universal laws for the asperity behavior, to be embedded in statis-
tical (e.g. the seminal Greenwood–Williamson model [8]) or fractal
or multiscale models (e.g., [9]) of surface contact.

The classic Hertz [10] theory of hemisphere contact has been
extended by studies of the elasto-plastic transition region [1,2,4],
while recent research efforts have included a combination of
normal and tangential loading [11,12], loading and unloading
[3,13,14,7], adhesion [15,5], or electromagnetic effects [16], among
others. The analysis of creep deformation of asperities has received
increasing attention (see [6,17,18]).

On the other hand, recent experimental research [19,20] has
supported the early conjectures by Moore and Tabor [21], Spurr
[22], Rabinowicz [23] and others that the emergence of transient
friction laws are linked to asperity deformation through creep. The-
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oretical analyses have supported this theory (e.g., [24,25]). Among
the effects describable by this creep theory are the dwell-time
dependent rise in static friction [21,22], the velocity-dependent
dynamic friction [26] or friction lag and hysteresis [27]. This
highlights the importance of analyzing the creep deformation of
asperities.

In Goedecke and Mock [18], the creep of an asperity under
a constant displacement or interference boundary condition was
analyzed. In the present paper, the analysis is extended to the tran-
sient creep behavior of an asperity under a constant force boundary
condition. The empirical laws presented in Goedecke and Mock [18]
are extended to present a comprehensive one-dimensional model
for this situation. This study aims both at developing a quantitative
understanding of the creep deformation of an asperity and find-
ing a quantitative model embeddable in a contact model for rough
surfaces.

2. Modeling and simulation

The geometry under analysis is a half-sphere with an unde-
formed radius R in contact with a rigid flat as shown in Fig. 1a.
Due to the symmetry, only a quarter sphere has to be con-
sidered, using an axial symmetric element formulation. At the
base of the sphere, a sliding boundary condition has been imple-
mented, in line with Kucharski et al. [28] and Kogut and Etsion
[1].

The commercial finite element simulation code ANSYS 11 was
used to perform the simulations. A mesh of about 3300 predom-
inantly rectangular elements with quadratic shape functions was
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Fig. 1. (a) Sketch of the geometry. (b) The finite element mesh used for the simulation.

constructed, with meshing based on a series of regions. A fine mesh
was used in proximity to the contact area, with increasingly coarser
meshes towards the region near the base of the sphere [18]. See
Fig. 1b for a graphical representation of the mesh. The following
mesh parameters were typically used: a semicircular region with
a radius of 0.15R centered on the uppermost tip of the sphere
was meshed with a default mesh size of approximately 0.005R.
In a semicircular region centered on the outer rim of the contact
zone with a radius of 0.02R, the default mesh size was reduced to
0.002R. In a wider region of semicircular shape with a radius of
0.38R around the sphere tip, the mesh size was increased to 0.01R
with no refinement near the boundary. This meshing region was
sized to comprise the high-stress regions of the model. The rest of
the model was meshed with a mesh size of 0.04R.

For the contact, a rigid line target element was chosen to model
the rigid flat and a purely Lagrangian contact algorithm to imple-
ment the contact condition. The contact radius a (see Fig. 1a),
contact force F , and interference ı were measured every time a node
established or lost contact with the rigid flat. ANSYS’ geometrically
nonlinear formulation (ANSYS keyword NLGEOM) was activated,
corresponding to a Lagrangian strain formulation. An isotropic and
elastic-perfectly plastic material model was chosen while no hard-
ening rule was used. The plasticity behavior was based on the
(isotropic) von Mises yielding criterion, with an associative flow
rule.

Standard continuum theory (e.g., [29]) states that the total strain
rate tensor ε̇tot can be separated into the creep, plastic and elastic
strain rate tensors according to

ε̇tot = ε̇cr + ε̇pl + ε̇el. (1)

During creep, the elastic strain εel decreases in favor of the creep
strain εcr , thus reducing the total stress � =C : εel with C the elastic-
ity tensor. It is sufficient to formulate the uniaxial creep law ε̇cr(�),
where εcr and � denote the equivalent strain and stress (von Mises
stress), respectively. The full creep rate tensor, ε̇cr , is then derived
by choosing the creep strain updates normal to the yield surface
(see [30]). The choice of the uniaxial creep law therefore deter-
mines the physics of the problem. In line with Goedecke and Mock
[18], a Garofalo [31] or hyperbolic sine power creep law

ε̇cr = C1 sinh (C2�)n (2)

was adopted, which for small stresses �, reduces to a power law as
used by Brot et al. [6], and for high stresses to an exponential law
as used by Brechet and Estrin [24], for example.

As the creep constant C1 defines the characteristic time scale
∝ 1/C1 of the creep process, all results are presented using a scaled

time

� = t

t1
= t

EC1

H
(3)

which was found in Goedecke and Mock [18] to render the results
universal against changes in parameters E (Young’s modulus),
C1 and H (hardness of the asperity). In the simulations, C1 was
therefore chosen to optimize numerical convergence. In reality, C1
usually shows an exponential dependence on the temperature T;
that is C1 = C̃1 exp(−Qcr/kT) where Qcr is the activation energy for
creep. Moreover, C1 varies widely even for small changes of mate-
rial composition, let alone for material classes. At 400 K and for
metals, values between 10−6 and 1 s−1 are not out of the ques-
tion, and reliable values are hard to achieve experimentally. In
the further discussion, as an example, an iron-like material will
be considered with an exemplary value of C1 = 10−3 s−1 (e.g., [32]).

For the main simulation loop, the testing of the creep model
outlined in the following sections required a flexible application
of boundary conditions and readout of simulation data from the
finite element code. The default boundary condition was that of a
constant force F = Fconst, applied to the punch, as outlined in Fig. 1.
The punch was therefore first quasistatically moved to the initial
interference ıinit that corresponded to the reaction force Fconst. The
subsequent slow descent of the punch was then measured by read-
ing the interference ı from the simulation, with the contact radius a
being a secondary variable. The exponential nature of the creep law
required a careful control of the integration time steps. A manual
control of the integration times, with an exponential distribution of
the time steps ti = tmin exp(� i/N) with � = ln(tmax/tmin) was used.
Here, tmin and tmax denote the lower and upper limit of the simu-
lation time frame and N the number of time steps, usually chosen
as N = 400, depending on parameter choice.

Within this primary simulation loop, the simulation data was
stored at every load step and, depending on the type of simulation
conducted, a number of additional probing cycles could be inserted.
The most simple probing cycle was a constant displacement (ı̇ = 0)
cycle. This is identical to the approach of Goedecke and Mock [18].
For this cycle, the force relaxation Ḟ was measured, allowing for a
comparison with the results in [18]. The time steps were chosen
to be extremely small, on the order of one hundredth of the corre-
sponding time step used in the main (i.e., constant force) simulation
loop. Therefore, an increase of the contact radius could usually not
be detected between time steps and, for lack of better data, the
radius a was assumed as constant.

For a second probing cycle, the simulation was reset to the
stored configuration and in a quasistatic simulation (t = const), the
change in punch reaction force (�F) was measured due to small
changes in interference (�ı). For this experiment, a small change
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