ARTICLE IN PRESS

YGYNO-975081; No. of pages: 7; 4C:

Gynecologic Oncology xxx (2013) xxx-xxx

Contents lists available at SciVerse ScienceDirect

Gynecologic Oncology

journal homepage: www.elsevier.com/locate/ygyno

Review

Therapeutic vaccines for ovarian cancer

John B. Liao a,b, Mary L. Disis b,*

- ^a Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
- b Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, 850 Republican St., Seattle, WA 98109, USA

HIGHLIGHTS

- Completed phase 2 and 3 trials with clinical endpoints have demonstrated modest responses.
- Targeting the immunosuppressive tumor microenvironment may augment the effectiveness of the next generation of vaccines.

ARTICLE INFO

ABSTRACT

Article history:
Received 17 May 2013
Accepted 17 June 2013
Available online xxxx

Keywords:
Ovarian cancer
Vaccines

While therapeutic vaccines for ovarian cancer represent only a small fraction of active clinical trials, growing 25 interest in this area and the accumulated data supporting the use of vaccines in cancer treatment portend fur- 26 ther expansion of trials incorporating these strategies. This review explores the rationale for the use of vaccines for the treatment of ovarian cancer. It examines vaccine platforms that have been investigated and 28 reviews the data from these studies. We also highlight recently reported phase 2 and 3 clinical trials with 29 clinical outcomes as endpoints. Finally, we consider directions for the next generation of vaccines in light 30 of these findings and our emerging understanding of agents that may augment vaccine responses by 31 targeting the immunosuppressive impact of the tumor microenvironment.

© 2013 Published by Elsevier Inc. 33

62

37 36

47

48

49

50

51

52

53

54

55

56

10

11

13 14

15

16

17

21

22

23

Contents

Immune therapies

Introduction	0
What is the rationale for vaccine therapy in ovarian cancer?	
What is the track record of ovarian cancer vaccine therapy?	
What can be done to increase the efficacy of ovarian cancer vaccines?	
Conflict of interest statement	0
Acknowledgements	0
References	0

Introduction

A survey of clinicaltrials.gov in March 2013 reveals that of all currently open and recruiting clinical trials for ovarian cancer patients, between 5 and 10% of studies evaluate approaches using immune based therapies. Approximately 40% of clinical trials involving modulation of the immune system employ a vaccine alone or in combination with other agents. While immuno-oncology represents but a small fraction of all open clinical trials for ovarian cancer, growing interest in this area and the accumulated data supporting the use of vaccines in cancer

* Corresponding author. Fax: +1 206 685 3128. E-mail address: ndisis@u.washington.edu (M.L. Disis). treatment, portends further expansion of trials incorporating these 57 strategies. This article will review the rationale for the use of vaccine 58 therapy in ovarian cancer, outline vaccine design considerations as we 59 survey a sample of current and recent applications under investigation, 60 and consider future directions for the field.

What is the rationale for vaccine therapy in ovarian cancer?

Ovarian cancer is immunogenic. The ability of the immune system 63 to recognize ovarian cancer is associated with improved prognosis. 64 The form of immunity associated with this improved prognosis is 65 known: T cell infiltrates in ovarian cancers are shown to be associated 66

0090-8258/\$ – see front matter © 2013 Published by Elsevier Inc. http://dx.doi.org/10.1016/j.ygyno.2013.06.023

Please cite this article as: Liao JB, Disis ML, Therapeutic vaccines for ovarian cancer, Gynecol Oncol (2013), http://dx.doi.org/10.1016/j.ygyno.2013.06.023

67 68

69 70

71

72

73 74

75

76

77

78

79 80

81

82

83

84

85

86

87

88 89

90

91

92

93 94

95

96 97

98

99

100

101

102 103

104

105

106

107 108

109

110

111

116

117

118

119

120 121

122

123

124

125

126

127

128

129

with improved prognosis in a number of studies. The infiltration of T cells has been observed in ovarian cancers since 1982 [1]. The full prognostic significance of T-cell infiltration in ovarian cancers, that it rivaled optimal surgical cytoreduction, was subsequently reported by Zhang et al in 2003 [2]. The presence of intratumoral T cells was an independent prognostic factor for PFS and OS by multivariate analysis. These findings have been validated in several subsequent studies, and point to the specific importance of cytotoxic CD8 + T-cells [3–9]. Regulatory T cells, another subset of T cells that can modulate immune responses and maintain tolerance to self-antigen, have been shown to predict poor patient survival in ovarian cancer [6,10].

The natural pathobiology of ovarian cancer also allows opportunities for therapeutic vaccines to be applied. Although over 60% of women diagnosed with ovarian cancer will have distant metastases according to the most recent NCI SEER data, and response rates to initial chemotherapy and cytoreductive surgery can be as high as 85% [11]. Unfortunately, despite these initial responses, over two thirds of patients will recur and even in patients who achieve complete remissions, maintaining these has proven elusive [12]. Despite advances in therapies, cure rates have changed little and most patients can expect a relapsing and remitting clinical course of progressive resistance to chemotherapies. However, periods of remission could allow vaccines the necessary time in patients with low disease burdens to induce an effective antitumor response to prolong remissions and prevent recurrences.

Finally, we have already seen the ability of novel therapies, modulating T-cells, demonstrate responses in ovarian cancer patients. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) engagement of costimulatory molecules can result in the arrest of T cell responses and impaired antitumor response. When antibody blockage of CTLA-4 was used in heavily pretreated ovarian cancer patients, who had received multiple lines of chemotherapy, four of nine patients were able to achieve stable disease, by CA-125 and radiographic criteria, without significant toxicities [13,14]. Programmed death 1 (PD-1) is another T-cell coinhibitory receptor. Antibody blockage of its ligand, PD-L1, has been studied in patients with selected advanced cancers, including ovarian cancer. Patients with advanced or metastatic disease having failed at least one line of chemotherapy were treated with anti-PD-L1 antibody in an effort to block inhibitory signals on effector T cells. 18% of ovarian cancer patients (n = 17) were able to achieve stable disease for at least 6 months [15]. The success of these recent methods of T cell modulation in an antigen non-specific fashion, in pretreated patients, suggests that vaccines capable of generating more focused immune responses specifically targeting tumor antigens may be even more effective.

What is the track record of ovarian cancer vaccine therapy?

An ideal antigen for an ovarian cancer therapeutic vaccine would be solely expressed on ovarian cancer cells, be highly immunogenic with a bias toward a cytotoxic antitumor response, and be able to be carried or expressed using the chosen vaccine platform. Additionally, the target should be biologically necessary in maintaining the malignant phenotype so that tumor cells cannot escape immune targeting through loss of expression. These would be considered tumor specific antigens. Few, if any, candidate antigens will meet all these criteria. HPV oncoproteins E6 and E7 in cervical cancer are one of the few examples of this, viral proteins that are also required for the malignant phenotype. For most malignancies, vaccine targets represent tumor-associated antigens, which are over expressed in tumor cells, but also are present in lower quantities in normal cells [16]. Because they are self-antigens, they are inherently less immunogenic. Candidate antigens being evaluated in ovarian cancer generally fall into this classification. A number of candidate antigens including HER2/neu, p53, CA125, MUC1, CEA, folate receptor alpha, cancer testis antigens like NY-ESO-1 and insulin growth factor binding proteins have all been proposed as potential vaccine targets in ovarian cancer due to their reported immunogenicity [17–27].

Therapeutic cancer vaccines have been evaluated using a number 131 of platforms including peptides/protein or DNA in combination with 132 adjuvant, anti-idiotype vaccines, recombinant viruses or other mi- 133 crobes, tumor cells or tumor cell lysates, or the delivery of activated 134 dendritic cells to patients. A number of these strategies are currently 135 being studied for ovarian cancer and their advantages and limitations 136 can be influenced by factors inherent to the specific platform (Table 1). 137

Peptide strategies are attractive because they allow the direct 138 translation of an identified tumor associated antigen into a vaccine 139 and precise measurement of immune responses. Peptides of a specific 140 length and sequence can represent epitopes that may be presented on 141 MHC molecules to effector T cells. However, peptides and proteins 142 have limited ability to elicit balanced and durable CD4 and CD8 143 responses alone. Peptide and protein based vaccine platforms are usually 144 administered with an immune modulator or adjuvant because they are 145 only weakly immunogenic. These vaccines may only represent a portion 146 of a tumor-associated antigen and selection of epitopes may be limited 147 by the diversity of HLA alleles in patients that are able to recognize 148 Q3 these epitopes. Long peptides incorporating both CD8+ and CD4+ 149 epitopes have the potential to be more efficiently presented to T cells 150 and have been demonstrated in vaccination targeting HPV E6 and E7 in 151 cervical cancer [28]. This strategy has been reported in a phase 1 trial of 152 28 ovarian cancer patients using overlapping long peptides from a 153 human tumor self-antigen, NY-ESO-1 with adjuvant. The vaccine was 154 well tolerated and able to induce both cellular, CD4+ and CD8+, and 155 antibody responses in nearly all vaccinated patients when given with a 156 Poly-ICLC adjuvant [29].

While a peptide or protein strategy may be limited by the knowledge of and ability of a specific patient's MHC molecules to present
the selected amino acids sequences, it has the potential to target
multiple antigens. Additionally, downregulation of surface MHC
class I is hypothesized to be a strategy of immune evasion in a number of malignancies. A look at the feasibility of selected peptides from
candidate antigens: p53, SP17, survivin, WT1, and NY-ESO-1 to be
incorporated in a multiantigen vaccine was undertaken by Vermeij
and colleagues. In tumor samples from 270 primary ovarian cancer
patients, 93.2% overexpressed at least one of the candidate antigens.
The authors also found that expression of MHC class I was present in
over 78% of ovarian cancer tested. This combination of findings suggests
that a vaccine directing a cellular immune response against multiple
target antigens may find some success in ovarian cancer [30].

Table 1t1.1Vaccine platforms used for ovarian cancer.t1.2

Platform	Advantages	Limitations
Peptide/protein	Specific epitopes can be	Cost
[19,29,68-70]	targeted	HLA restriction
	Immune responses can	Weak immunogenicity, requires
	be defined	adjuvant
DNA	Ease of production	Weak immunogenicity, requires
	Able to accommodate	adjuvant
	multiple antigens	Less experience in ovarian cancer
Virus/bacteria	Ease of production	Antigen competition with vector
[22,31,71]	Immunogenicity of	Need to attenuate pathogen
	vector	
Anti-idiotype	Can target carbohydrate	Labor intensive production
[34–36]	antigens	Phase III trials targeting CA125
- 11:1 H.Com		do not show clinical response
Dendritic cell [67]	Antigen presentation	Cost
	controlled and efficient	Restricted to individual patient
		Requires leukapheresis
VAZIn a La decession E del 1	D-6111-61	Labor intensive production
Whole tumor [41]	Defined and undefined	Cost
	antigens targeted	Restricted to individual patient
		Require availability of tumor
		Potential for autoimmunity

Download English Version:

https://daneshyari.com/en/article/6184578

Download Persian Version:

https://daneshyari.com/article/6184578

<u>Daneshyari.com</u>