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Abstract

The paper suggests a revision to the asperities plastic to elastic mode transition in the elastic–plastic contact model of fractal rough surfaces,
offered by Majumdar and Bushan [A. Majumdar, B. Bushan (MB model) J. Tribol. 113 (1991) 1–11.]. According to the MB model, the contact
mode of a single fractal asperity transfers from plastic to elastic when the load increases and the growing contact area exceeds a certain critical
value, which is scale independent. This surprising result of the MB model is in contrast with classical contact mechanics where increasing contact
area due to increased load is associated with a transition from elastic to plastic contact. The present study describes a revised elastic–plastic contact
model of a single fractal asperity showing that, contrary to the MB model prediction, the critical contact area is scale dependent. The revised model
also shows that a fractal asperity behaves as would be expected from classical contact mechanics namely, as the load and contact area increase a
transition from elastic to plastic contact mode takes place in this order.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Contact mechanics of rough surfaces is important in studying
and modeling physical phenomena such as thermal and electrical
conductivity, friction, adhesion, wear, etc. Obviously, the ability
to characterize surface profile by adequate parameters is crucial
in these cases. Surface topography has been considered as a
stationary random process [1], which can be characterized by
statistical parameters such as the standard deviation of asperity
heights σ, the slope σ′, and the curvature σ′′ [2]. However, mod-
ern roughness measurements by Sayles and Thomas [3] reveal
that many engineered surfaces (mainly these used in MEMS)
have a non-stationary surface texture, which has a multiscale
nature. This means that when a section of a rough surface is
magnified, smaller scales of roughness appear. Therefore, the
parameters needed for stochastic models cannot be determined
uniquely since they depend strongly on the resolution of the
roughness-measuring instrument. The necessity for scale inde-
pendent contact models motivated the growing use of fractal
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description of the multiscale nature of contacting rough surfaces.
Archard [4] proposed in 1957 the first contact model, which used
a “fractal” description. Although Archard’s work predates the
use of the term fractal, he recognized this general characteristic
of surfaces, and suggested a model of rough surfaces in which
a progression of smaller hemispherical asperities were super-
posed on a larger scale. He showed that even for a purely elastic
contact, a linear relationship between the load and the contact
area can be established, when a Hertzian contact is assumed.
Ciavarella and Demelio [5] revisited the Archard’s model for
an elastic multiscale contact of rough surfaces, and compared it
with modern fractal models. Berry and Lewis [6] investigated
the properties of the Weierstrass and Mandelbrot fractal func-
tion (WM), which is a discrete series of superposed self-affine
sine waves, and forms the basis for fractal surface roughness
description. Majumdar and Bushan [7], and Majumdar and Tien
[8], used this function to define a simple idealization of a two-
dimensional fractal rough surface profile. Greenwood and Wu
[9] criticized this approach, claiming that the results presented
in Ref. [7,8] were based primarily on a model of a continuous
(and not discrete) power-law spectral density.

Majumdar and Bushan [10], used the WM function to develop
one of the first fractal contact models, referred to in the following
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as the MB model. The rough surface texture in the MB model
is based on a 2D multiscale surface profile z(x) generated by the
WM function, in which the surface roughness is given by

z(x) = GD−1
∞∑

n=n1

cos(2πγnx)

γ (2−D)n (1)

where D is the fractal dimension of the surface profile (for a
physically continuous surface 1 < D <2), and γn determines the
frequency spectrum of the surface roughness (γ > 1). The fractal
roughness parameter, G, is a characteristic length scale of the sur-
face that determines the position of the spectrum along the power
axis, and is invariant with respect to all frequencies of roughness.
The index, n, indicates the frequency level of the asperities. As
can be seen from Eq. (1) the WM function is an infinite series
of cosinusoidal waves of different amplitudes and frequencies,
superimposed on each other. The frequency difference between
the levels leads to anywhere between constructive to destructive
interference. The frequency ratio between two adjacent levels is
γn+1/γn = γ , and the amplitude ratio is 1/γ (2−D). Since γ = 1.5
was found to be a suitable value for high spectral density and for
phase randomization [8], the number of wavelengths in a cer-
tain level, is 1.5 times the number of wavelengths in the previous
level.

The MB model assumes that the size distribution of contact
area spots follows that of ocean islands generated by truncating
the earth surface at a constant height. This model triggered rough
surface contact studies by different researchers, e.g. Zahouani
et al. [11], and Willner [12], and its basic ideas were used in
various fields of applied physics. Komvopoulos and Yan [13]
developed an algorithm to generate a three-dimensional frac-
tal surface using the WM function and incorporated it into an
elastic–plastic contact model. Ciavarella et al. [14] used a fractal
model concept to investigate elastic contact stiffness and contact
resistance. Bora et al. [15] developed a method to investigate the
geometry of asperities of Silicon MEMS surfaces at different
length scales. Sahoo and Chowdhury [16,17] analyzed fractal
friction and wear. Kogut and Komvopoulos [18,19] applied the
fractal surface concept to the new emerging field of contact
electro-mechanics, and Kogut and Jackson [20], very recently,
compared the statistical and fractal approaches to contact mod-
eling, showing substantial differences between the two.

As we will show in the next section, the MB model suffers
from a drawback in treating the transition from elastic to plastic
contact mode of a fractal surface single asperity. This drawback
may affect many areas of tribology such as contact conductance,
wear, adhesion, friction, MEMS interfaces, etc., where the MB
model concept has been used or referred to e.g. [14–31]. The
main objective of this paper is therefore to resolve the above-
mentioned drawback by offering a revision of that aspect in the
MB model.

2. Description of the MB model

Fig. 1 illustrates the conceptual approach of the MB model.
Fig. 1(a) presents the idea of Greenwood & Tripp [32], of replac-
ing two contacting rough surfaces, separated by a distance d,

Fig. 1. The MB model: (a) contact between a rough surface and a flat producing
isolated contact spots, and (b) the geometry of a contact spot of length scale l.

with an equivalent rough surface in contact with a rigid flat. The
equivalent rough surface is generated by the WM function (see
Eq. (1)), and the geometry of each asperity (Fig. 1(b)) is rep-
resented by the appropriate single term in the cosine series (an
assumption that Greenwood and Wu [9] find difficult to accept).
The 2D asperity profile z(x) has, in the MB model, the form:

z(x) = GD−1l2−D cos
(πx

l

)
(2)

where l is the length scale (base diameter) of a fractal asperity
at level n, such that ln = 1/γn. Similar to Ref. [9], in our opinion
Eq. (2) should contain additional factor 2 in the parenthesis (see
Eq. (1)), but we choose to continue with a quote of the origi-
nal expression shown in the MB model. Following Eq. (2), the
asperity height is

δ = z(0) = GD−1l2−D (3)

In addition, the radius of curvature at the asperity summit is:

R = 1

|d2z/dx2|x=0
= lD

π2GD−1 (4)

It can be seen from Eq. (4) that the asperity radius of curvature,
depends on its length scale, contrary to the classical model of
Greenwood and Williamson [2] (the GW model), which assumes
constant radius for all the asperities.

In the MB model, it is assumed that when the two surfaces are
brought into contact the rigid flat forms a “truncation plane” on
which the contact spots are spread. The size distribution of the
contact spots follows the model of Mandelbrot [33], i.e. obeys
a fractal law of the distribution of island areas truncated by the
sea level. According to the MB model the truncation area, at, of
a single asperity forms its base as well as its real contact area, a,
where a = l2 (π was omitted in Ref. [10]). Hence, by definition,
in the MB model the asperity is fully deformed by the contacting
plane, and so the interference of any specific asperity is identical
to its full height δ. By substituting l = a1/2 in Eqs. (3) and (4),
Majumdar and Bushan obtained the asperity height δ, and its
radius of curvature R, in terms of the truncated contact area a:

δ = GD−1a(2−D)/2 (5)
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