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Abstract

A time–frequency analysis can give an overall view of the behaviour of friction-induced vibration. In this paper, short-time Fourier transform
(STFT), Wigner–Ville distribution (WVD), Choi–Williams distribution (CWD) and Zhao–Atlas–Marks distribution (ZAMD) are applied to analyze
time–frequency characteristics of friction-induced vibration. The result shows that there is always a frequency change in the time–frequency
presentation of vibration in the location where the vibration is bounded. The frequency changes in time–frequency presentations are associated
with nonlinearity of vibration systems. The nonlinearity may be counted as the evidence to support the consideration that friction-induced vibrations
are bounded by limit cycles due to the system nonlinearity. Based on the time–frequency presentations of vibrations, it may be concluded that the
friction vibration system is generally a linear system in the phase of vibration initiation but is a nonlinear system in the phases of vibration being
bounded and disappearance.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Time–frequency analysis; Friction-induced vibration; Squeal; Reciprocating sliding

1. Introduction

Phenomena concerning squeal are very confusing. Two fric-
tion sliding processes in nominally identical conditions may
show very different propensities of generation of squeal. Fur-
ther, without changing the nominal conditions, a sliding may
become silent from squealing or vice versa [1,2]. Many endeav-
ors have been made to acquire a comprehensive understanding of
squeal [3–9]. Four excitation mechanisms of squeal are proposed
in the literature. These are stick–slip, negative friction–velocity
slope, sprag slip and modal coupling [3–6]. During the 1980s
and 1990s, the emphasis of studying squeal was shifted from
stick–slip to the modal coupling between normal and friction
forces. Until recently, the modal coupling is still considered as
a major mechanism behind squeal generation [10–14]. It has
been being the main topic of many researches such as a finite
element analysis and a dynamics simulation concerning squeal
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and associated vibration [10–13]. The modal coupling generally
involves an eigenvalue analysis of friction system motion. How-
ever, it is seen that such an eigenvalue analysis cannot define
clearly physical phenomena causing squeal [9–13]. According
to Tworzydlo, it appears that there is a mechanism different
from the above-mentioned four mechanisms for the generation
of friction-induced vibration [10]. Tworzydlo observed that one
vibration occurred accompanying the development of surface
damage of the wear scar. In view of the theories of negative
friction–velocity slope and modal coupling, the vibration will
grow infinitely once the friction system becomes unstable. Actu-
ally, this vibration is always limited in magnitude. In the field of
friction-induced vibration, a common explanation for the lim-
ited magnitude of friction-induced vibration is that it may be
bounded by a limit cycle due to the system inherent nonlinearity
[3]. However, this nonlinearity has not been significantly pur-
sued in the disc brake squeal literature [14]. In a word, there is
a strong need for further research to promote our understanding
of various friction mechanisms behind squeal generation.

Squeal is very closely associated with friction-induced vibra-
tion. It is commonly considered that vibration emits squeal [3].
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Therefore, the study on squeal is generally shifted to that on
friction-induced vibration. The whole process from the initial
formation to disappearance of friction-induced vibration may
contain abundant information about the mechanism of the vibra-
tion formation. Time–frequency analysis is a good consideration
for this process analysis. The time–frequency presentation is
suited for analyses of stationary or non-stationary signals. It
gives a time and frequency domain representation of the sig-
nal simultaneously. Time–frequency representation has been
applied to many fields including assessment of physical condi-
tion of mechanical systems [15], tribology [16,17] and structural
vibration analysis [18].

In this paper, the emphasis is given to a time–frequency
analysis of the vibration signal associated with squeal.
Time–frequency representations of a whole process from the
initial formation to disappearance of friction-induced vibra-
tion are investigated. In the present analysis, four methods
including short-time Fourier transform (STFT), Wigner–Ville
distribution (WVD), Choi–Williams distribution (CWD) and
Zhao–Atlas–Marks distribution (ZAMD) are considered to
obtain better accuracy of the time–frequency analysis. Based
on a comparative study of these four methods, STFT is
adopted as a rough method and ZAMD is adopted as a fine
method to analyze time–frequency representations of vibration
signals.

2. Theoretical background of time–frequency analysis

2.1. Short-time Fourier transform (STFT)

The short-time Fourier transform divides up a signal into
small time segments and performs Fourier transforms on
each segment of time to derive the spectra. The short time–
frequency Fourier transform of a signal x(t) can be expressed
by,

w(t, ω) = 1√
2π

∫
e−jωτx(τ)h(τ − t) dτ (1)

where h(t) is a window function centered at time t. The energy
density spectrum of the short-time Fourier transform is defined
as,

P = |w(t, ω)|2 =
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STFT approach can successfully deal with slowly varying
signals, but cannot process properly signals consisting of many
harmonics or presenting resonance phenomena. Its resolution
in time and frequency domains is heavily dependent on applied
windows. Although the STFT compromise between time and
frequency information can be useful, the drawback is that once
you choose a particular size for the time window, that win-
dow is the same for all frequencies. More significantly, this
method shows a clear advantage that there is no cross-terms
interference in its spectrum analysis results, which is annoying
in the spectrum analysis results from Wigner–Ville distribu-

tion, Choi–Williams distribution and Zhao–Atlas–Marks distri-
bution.

2.2. Wigner–Ville distribution (WVD)

Wigner–Ville distribution function introduced by Wigner
[19] is as follows,
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∫

e−jωτx

(
t + τ

2

)
x∗

(
t − τ

2

)
dτ (3)

where x*(t) is the complex conjugate of x(t).
WVD is more attractive because it discards the hypothesis

of short-term stationarity of the signal and overcome the typical
problem of the compromise between time and frequency resolu-
tion. However, this method shows a clear drawback consisting of
the appearance in the spectrum of artifacts called ‘cross-terms’.
Sometimes, the interference from the cross-terms may result in
a misidentification of the vibration frequencies.

2.3. Choi–Williams distribution (CWD)

A generalized class of time–frequency presentations was
introduced by Cohen [20] as follows,
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where x(u) is the signal needed to analyze, x*(t) its complex
conjugate and φ(θ, τ) is an arbitrary function called the ker-
nel. By choosing different kernels, different distributions are
obtained. When kernel φ(θ, τ) = 1, Eq. (4) is well-known WVD.
Choi–Williams introduced the exponential kernel of the follow-
ing form,

φ(θ, τ) = e−θ2τ2/σ (5)

where σ is a parameter. If σ is large enough then the ker-
nel approaches 1, Choi–Williams distribution approaches the
Wigner–Ville distribution. For a small σ, it peaks at the origin
and falls off rapidly away from the axis. This property
contributes to reducing the cross-term in the case of multi-
component signals. The power spectrum density of Choi–
Williams distribution is expressed by,
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4π3/2

∫∫
1√
τ2/σ

e−((u−t)2/(4τ2/σ))−jωτx

×
(

u + τ

2

)
x∗

(
u − τ

2

)
du dτ (6)

2.4. Zhao–Atlas–Marks distribution (ZAMD)

In the ZAMD method [21], the kernel is adopted as follows,

φ(θ, τ) = g(τ)|τ| sin(aθτ)

aθτ
(7)
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