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a b s t r a c t

Lactic acid is an interesting platform chemical with many promising applications. This includes the use as
a building block for the production of biodegradable plastics and environmentally friendly solvents. A
study of the liquid-phase conversion of the triose-sugars, glyceraldehyde and dihydroxyacetone directly
to methyl lactate and lactic acid catalyzed by inexpensive commercially available zeolites is presented.
One particular zeolite, H-USY (Si/Al = 6) is shown to be quite active with near quantitative yields for this
isomerization. Deactivation of the H-USY-zeolite was studied by correlating the catalytic activity to data
obtained by TPO, XRD, N2-sorption, and NH3-TPD on fresh and used catalysts. Coking and irreversible
framework damage occurs when lactic acid is produced under aqueous conditions. In methanol, methyl
lactate is produced and catalyst deactivation is suppressed. Additionally, reaction rates for the formation
of methyl lactate in methanol are almost an order of magnitude higher as compared to the rate of lactic
acid formation in water.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Lactic acid is currently emerging as a building block in a new
generation of materials such as biodegradable plastics and solvents
[1–3]. These new materials can be produced from biomass-derived
precursors and have the potential to replace existing petroleum-
based materials by displaying comparable and even superior prop-
erties [4]. Lactic acid also has the potential to become a central
chemical feedstock for the chemical industry in the production of
acrylic acid, propylene glycol, and different useful condensation
products [5–8].

However despite its high potential, the major obstacle in a
wider implementation of lactic acid-based materials and a lactic
acid platform in the chemical industry is the high cost associated
with the expensive and cumbersome manufacturing route of lactic
acid. The large-scale production of lactic acid relies on the batch-
wise fermentation of aqueous glucose under anaerobic conditions
[9,10]. The fermentation reaction typically takes 2–4 days and re-
quires calcium hydroxide to be added continuously to maintain a
neutral pH-level in order for the bacteria to function optimally,
thereby resulting in the formation of calcium lactate. Crystalliza-

tion of calcium lactate, followed by acidification with sulfuric acid
releases the crude lactic acid and gypsum. Typically, one ton of
gypsum is formed for every ton of lactic acid produced [1]. Further
purification of lactic acid is done by esterification to methyl lactate
followed by distillation and hydrolysis to release pure lactic acid.

Lactic acid is an isomer of the triose sugars dihydroxyacetone
(DHA) and glyceraldehyde (GLA). The relative stability of the three
isomers are in the order of lactic acid� DHA > GLA. The triose
sugars can be formed by aerobic oxidation of glycerol using
both homogeneous and heterogeneous catalysts [11–14] or by
fermentation of glycerol using the Gluconobactor suboxydans strain
[15–18].

Homogeneous catalysts such as sulfuric acid and sodium
hydroxide are known to catalyze the isomerization of DHA and
GLA in very hot water (250–300 �C) to give low yields of lactic acid
[19,20]. A more effective isomerization catalyst is zinc sulfate,
which is reported to give a 75–86% yield of lactic acid in 300 �C
hot water [21]. However, the use of a homogeneous isomerization
catalyst is problematic from an environmental point of view and
the purification of lactic acid can be problematic. Furthermore,
the use of very hot water as the reaction media requires expensive
pressure resistant equipment which will make a large-scale
process unattractive. Homogeneous metal chlorides are active in
this isomerization–esterification reaction. In particular, tin
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chloride has been found to be able to form methyl lactate in a high
89% yield [22]. However, a high catalytic amount (10 mol%) of tin
chloride is used in this case.

Currently, very limited work has been done using acidic zeolites
for the conversion of biomass to value added chemicals. Acidic zeo-
lites have been demonstrated to catalyze the conversion of DHA in
ethanol to form ethyl lactate, although in a moderate 65% yield
[23]. Very recently Lewis acidic beta zeolites were shown to be
highly active in the isomerization reaction of DHA and GLA with
excellent selectivity toward methyl lactate/lactic acid [24]. These
hydrophobic zeolites were made by incorporating Ti, Zr, and Sn
into the framework. In particular the Sn-Beta zeolite appears to
be an exceptionally promising catalyst in the DHA/GLA conversion.
However, application may be limited due to long synthesis time
and to the use of tin. Thus an investigation using commercially
available solid acids, mainly zeolites containing only silicon and
aluminum and sulfated zirconia was undertaken in batch reactors.
The most promising of these catalysts, the proton form of an ultra
stable Y-zeolite with a Si/Al = 6 (H-USY-6) showed very good activ-
ity with near quantitative yields at appropriate conditions. This
zeolite was tested under continuous flow within a plug flow reac-
tor to determine the kinetics of the isomerization network and to
study the deactivation of the system. A discussion of the catalytic
behavior is coupled to the results from XRD, NH3-TPD, N2-sorption,
FT-IR, and TPO of the fresh and spent zeolite.

2. Experimental

2.1. Chemicals

Dihydroxyacetone (97%), pyruvic aldehyde dimethyl acetal
(PADA) (97%), glyceraldehyde (95%), anhydrous pyridine (99.8%),
and methanol (99.9%) were purchased from Sigma-Aldrich. Methyl
lactate (97%) was obtained from Fluka. Pyruvic aldehyde (PA) was
obtained from SAFC Supply as a 40 wt.% aqueous solution while
lactic acid was obtained from Fluka and Riedel-de Haën. All the
commercially available zeolites used throughout this study were
kindly provided by Zeolyst International. The zeolites are pure
and do not contain any binder material. Some of the zeolites were
received in the NH4-form. In these cases the zeolites were calcined
at 550 �C in air for 6 h prior to use in order to produce the acidic
form.

2.2. Catalytic tests

Batch experiments were performed in an Ace pressure tube
with magnetic stirring. In these runs, 80 mg of catalyst, 1.25 mmol
of substrate (calculated as monomer), and 4 g of water or methanol
were added and mixed in the pressure tube using magnetic stirrer
ring. The ace pressure tube was then dipped into an oil bath having
a temperature of 140 �C for experiments with water and 120 �C for
experiments with methanol. The internal temperature during reac-
tion as recorded with an internal thermocouple was 125 �C and
115 �C, respectively.

In the flow reactor set-up, the feed was introduced into the sys-
tem by either a Waters 501 HPLC pump, or by a Knauer K-120 HPLC
pump. The catalyst was held in place in a stainless steel reactor
tube by quartz wool on both sides of the catalyst. The reactor tube
was heated by a Carbolite oven while a type E thermocouple at-
tached to the external surface of the reactor tube was used to mon-
itor the reactor temperature. The effluent was collected in a
stainless steel collector tube. The system was pressurized to
20 bar of pressure with Argon before each run. Feeds were created
by placing a measured amount of substrate in a volumetric flask
and filling to the set volume. For concentrated solutions, the mix-

tures were heated to 69 �C under stirring for 1–2 h to help dissolve
the substrate.

Effluent concentrations for batch and flow experiments were
characterized by an Agilent 1200 Series HPLC with an R.I. detector
and a Biorad Aminex HPX-87H column and an Agilent 6890N GC
with an HP-5column and an FID detector. Species were quantified
with standards and confirmed with GC-MS, Agilent 6850 GC sys-
tem coupled with Agilent 5975 C MSD.

2.3. Zeolite characterization

The degree of carbon deposition on used catalysts was deter-
mined using temperature-programed oxidation (TPO). Prior to
analysis the used zeolites were dried at 110 �C. The TPO was car-
ried out by heating a premeasured amount of used catalyst to
650 �C at 3.5 �C min�1 in a gas flow of 20 mL min�1 consisting of
5% oxygen in helium. The release of CO and CO2 was quantified
using a BINOS detector. The TPO data are shown in Table 4 as the
weight percent of carbon present on the coked catalyst.

NH3-TPD, N2-sorption, and XRD were performed on calcined
catalyst samples. The procedures used were either as described
for the TPO or calcination at 550 �C for 4 h in static air, heated at
a ramp of �2 �C/min. Nitrogen physisorption was measured on a
Micromeretics ASAP 2020 after the samples had been degassed
in vacuum at 300 �C for 2 h.

Powder X-ray diffraction (XRD) patterns were recorded on a
Bruker AXS powder diffractometer. The XRD data are shown in Ta-
ble 4 as a relative crystallinity, calculated by integrating the peak
area of eight characteristic reflections and comparing to the un-
used zeolite. The reflections used along with the respective 2h val-
ues given in parenthesis were 331 (15.97), 511 (19.01), 440
(20.71), 533 (24.06), 642 (27.52), 822 (31.29), 555 (31.95), and
664 (34.69) [25].

NH3-TPD measurements were performed on a Micromeritics
Autochem II equipped with a TCD detector. Dry weights of the
samples were found after evacuation at 300 �C for 1 h. After satu-
ration with ammonia, the weakly bound ammonia was desorbed
prior to measurement at 150 �C for 1 h in a He flow of 25 mL min�1.
The desorption curve was then attained at a heating ramp of 15 �C
per minute to 550 �C at a He flow rate of 25 mL min�1.

FT-IR operated in transmission mode was used to analyze the
zeolites on a BioRad FTS 80 spectrometer equipped with a MCT
detector. Self-supporting wafers of the zeolites were pressed and
were prior to analysis dehydrated under evacuation at 400 �C for
4 h. The absorbance spectra were obtained after the samples were
allowed to cool to RT. Pyridine adsorption was done by saturating
the zeolite at RT and subsequently heating the sample to 200 �C for
30 min under evacuation. The sample was once again allowed to
cool to RT before the spectrum was recorded.

3. Results and discussion

3.1. Reaction pathway

We have investigated the isomerization of the two three-carbon
sugars dihydroxyacetone (DHA) and glyceraldehyde (GLA) into
methyl lactate and lactic acid over an acidic zeolite catalyst. When
the solvent used is methanol, the resulting product becomes
methyl lactate and if water is used, lactic acid is formed. Scheme
1 gives the proposed reaction path of the isomerization reaction
in either alcohol or water [22–24]. Pyruvaldehyde (PA) is believed
to be an initial product formed by the dehydration of DHA/GLA.
After addition of water/methanol the resulting hydrate/hemiacetal
can isomerize into lactic acid/methyl lactate (path A). The reaction
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