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Purpose: To determine whether dynamic and personalized schedules of visual field (VF) testing and intra-
ocular pressure (IOP) measurements result in an improvement in disease progression detection compared with
fixed interval schedules for performing these tests when evaluating patients with open-angle glaucoma (OAG).

Design: Secondary analyses using longitudinal data from 2 randomized controlled trials.
Participants: A total of 571 participants from the Advanced Glaucoma Intervention Study (AGIS) and the

Collaborative Initial Glaucoma Treatment Study (CIGTS).
Methods: Perimetric and tonometric data were obtained for AGIS and CIGTS trial participants and used to

parameterize and validate a Kalman filter model. The Kalman filter updates knowledge about each participant’s
disease dynamics as additional VF tests and IOP measurements are obtained. After incorporating the most recent
VF and IOP measurements, the model forecasts each participant’s disease dynamics into the future and char-
acterizes the forecasting error. To determine personalized schedules for future VF tests and IOP measurements,
we developed an algorithm by combining the Kalman filter for state estimation with the predictive power of lo-
gistic regression to identify OAG progression. The algorithm was compared with 1-, 1.5-, and 2-year fixed interval
schedules of obtaining VF and IOP measurements.

Main Outcome Measures: Length of diagnostic delay in detecting OAG progression, efficiency of detecting
progression, and number of VF and IOP measurements needed to assess for progression.

Results: Participants were followed in the AGIS and CIGTS trials for a mean (standard deviation) of 6.5
(2.8) years. Our forecasting model achieved a 29% increased efficiency in identifying OAG progression
(P<0.0001) and detected OAG progression 57% sooner (reduced diagnostic delay) (P ¼ 0.02) than following a
fixed yearly monitoring schedule, without increasing the number of VF tests and IOP measurements required.
The model performed well for patients with mild and advanced disease. The model performed significantly
more testing of patients who exhibited OAG progression than nonprogressing patients (1.3 vs. 1.0 tests per
year; P<0.0001).

Conclusions: Use of dynamic and personalized testing schedules can enhance the efficiency of OAG
progression detection and reduce diagnostic delay compared with yearly fixed monitoring intervals. If further
validation studies confirm these findings, such algorithms may be able to greatly enhance OAG
management. Ophthalmology 2014;-:1e8 ª 2014 by the American Academy of Ophthalmology.

Supplemental material is available at www.aaojournal.org.

When evaluating patients with glaucoma to assess for disease
progression, clinicians must be able to assimilate past and
present information from standard automated perimetry and
other functional tests, intraocular pressure (IOP) measure-
ments, and careful assessments of the optic nerve and retinal
nerve fiber layer to decide whether patients are stable or
exhibit disease progression and require changes in manage-
ment. Complicating such an assessment is the presence of
measurement error and variability in testing performance that
is known to exist for many of these testing modalities. Studies
have shown that the difficulties associated with evaluating
patients with glaucoma to assess for disease progression have
led to undertreatment1,2 and that decision aids, such as risk
calculators,3 are useful supplements to clinician judgment. In

this article, we present pilot data from a validation study of a
decision aid tool that we hope someday will be able to assist
clinicians with the management of patients with glaucoma.
The tool assimilates data from past and present visual fields
(VFs) and IOP measurements to determine whether a
patient’s disease is stable and helps guide the timing of
when the patient should next be examined to assess for
disease progression.

At the core of this decision aid is a powerful statistical tool
called “Kalman filtering,” which models the motion of a dy-
namic system, forecasting the future trajectory and combining
multiple measurements for optimal noise reduction.4 This
technique is useful for accurately extracting state/position
estimates from multiple noisy data sources. In the 1960s, the
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National Aeronautics and Space Administration used Kalman
filtering to “optimally” guide Apollo missions to the moon.
More recently, there has been interest in applying it to the
management of chronic diseases, such as monitoring glucose
levels in patients with diabetes mellitus5 and prostate-
specific antigen levels in patients with prostate cancer.6 This
approach builds a model that optimizes the timing of future
tests by integrating a population-based understanding of the
natural history of the disease of interest with the individual
patient’s disease dynamics. When applied to glaucoma man-
agement, the model can be used to forecast future perimetric
and tonometric measurements for individual patients. Unlike
traditional approaches that identify glaucoma progression by
comparing test results with a normative database, this
approach generates personalized information on the disease
state for each patient and forecasts how that state changes over
time. By applying this to glaucoma management, it can be
used to predict future values of the “positions” and respective
velocities and accelerations of VF global indices, such asmean
deviation (MD), pattern standard deviation (PSD), visual
functional index, and IOP levels. One would expect these
estimates to have increased accuracy over raw observations
because the Kalman filter can optimally correct for measure-
ment noise in the forecasts.

The purpose of this study is to determine whether the use
of Kalman filtering to obtain personalized monitoring
schedules of VF testing and IOP measurements for patients
with open-angle glaucoma (OAG) results in an improve-
ment in disease progression detection compared with 1-,
1.5-, and 2-year fixed interval schedules for performing
these tests. By using longitudinal data from 2 randomized
controlled trials of patients with OAG, we developed,
parameterized, validated, and tested an algorithm that
can determine whether each patient with OAG is stable
or experiencing disease progression. The algorithm also
dynamically determines the optimal time to perform the next
test to monitor for OAG progression on the basis of infor-
mation from the population that is integrated with past test
results from the individual patient.

Methods

Data Sources

Data from 2 large, multicenter, randomized, controlled clinical
trials, the Collaborative Initial Glaucoma Treatment Study (CIGTS)
and Advanced Glaucoma Intervention Study (AGIS), were used for
parameterization and validation of a Kalman filter and scheduling
algorithm. These clinical trials were chosen because they included
multiple measurements of IOP (by Goldmann applanation tonom-
etry) and VF results (using a Humphrey Field Analyzer; Carl Zeiss
Meditec, Dublin, CA) for patients with mild to advanced OAG
over a period of up to 11 years and because they had highly
structured follow-up examination regimens, with perimetry and
tonometry performed every 6 months throughout the trials. In the
CIGTS, 607 adults with newly diagnosed, early to moderate OAG
were randomized to trabeculectomy or medical therapy and fol-
lowed for up to 11 years to assess for disease progression.7,8 In the
AGIS, 591 adults with advanced OAG were randomized to treat-
ment with argon laser trabeculoplasty or trabeculectomy and fol-
lowed for at least 5 years to check for OAG progression.9 The

information contained in both the CIGTS and AGIS datasets was
de-identified before we accessed it, and the University of Michi-
gan Institutional Review Board determined that this study was
exempt from requiring its approval.

Inclusion and Exclusion Criteria

To be included in our study, individuals from the 2 trials were
required to have �4 examinations with VF and IOP readings. From
both trials, we included only those participants who were treated
with medical therapy or laser trabeculoplasty. Because incisional
intraocular surgery can abruptly change glaucoma progression dy-
namics, we opted in this pilot study not to include data from those
who were randomized to initial treatment with trabeculectomy, and
those who underwent trabeculectomy during the course of either trial
were censored at the time of their first trabeculectomy.

Data Elements

For each trial participant, we gathered demographic information on
their age, sex, and race along with information on the IOP and VF
performance at each visit. From every VF test performed on each
patient throughout the trial, we extracted the MD and PSD values.
By assessing global indices from serial VFs from the same patient
over time, we calculated rates of change (i.e., velocity and accel-
eration) for MD and PSD. Velocity was computed per month, and
acceleration was computed as the difference of the velocities from
one period to the next period. We also calculated velocity and
acceleration for IOP in a similar manner for each participant.

To validate and test our methodology, we divided the study’s
CIGTS and AGIS trial data equally into a training set (for
parameterizing models) and testing set (for validating and testing
the models). We randomly assigned CIGTS/AGIS participants to
these sets to ensure equal representation of both groups in the
training and testing sets. We performed this randomization process
25 times and calibrated the Kalman filter for each randomization.
The prediction error of the Kalman filter was consistently unbiased
across the randomizations. We present the numeric results of one of
these randomizations.

Probability of Progression

Progression Criterion. We characterized a participant in the dataset
as exhibiting progression at a particular visit if he or she experienced a
loss of MD of at least 3 decibels from their baseline MD and this loss
was confirmed on a subsequent VF test.8 Because there is presently no
gold standard for identifying progression on perimetric testing, we
compared our progression definition with other progression
measures, such as pointwise linear regression10 and changes in
HodappeAndersoneParrish (HAP) classification11 (e.g., change
from a HAP classification of moderate to a HAP classification of
severe) and found strong similarities in progression identification
(data not shown), suggesting robustness of the definition of
progression we chose to use. Other progression definitions could
easily be incorporated into the algorithm, contingent on the
availability of all of the necessary data elements.

Logistic Regression

We developed a probability of progression function using gener-
alized estimating equations with a logit link function and
exchangeable correlation structure using the training data as inputs.
This binary logistic regression approach accounted for noise in VF
and IOP measurements and allowed us to assess the likelihood of a
patient experiencing OAG progression at a particular visit given
the patient’s specific characteristics (sex, age, race, baseline MD,
present MD, MD velocity, MD acceleration, baseline PSD, present
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