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a b s t r a c t

The detection of contours in noise has been extensively studied, but the detection of closed contours, such
as the boundaries of whole objects, has received relatively little attention. Closed contours pose substan-
tial challenges not present in the simple (open) case, because they form the outlines of whole shapes and
thus take on a range of potentially important configural properties. In this paper we consider the detec-
tion of closed contours in noise as a probabilistic decision problem. Previous work on open contours sug-
gests that contour complexity, quantified as the negative log probability (Description Length, DL) of the
contour under a suitably chosen statistical model, impairs contour detectability; more complex (statisti-
cally surprising) contours are harder to detect. In this study we extended this result to closed contours,
developing a suitable probabilistic model of whole shapes that gives rise to several distinct though inter-
related measures of shape complexity. We asked subjects to detect either natural shapes (Exp. 1) or
experimentally manipulated shapes (Exp. 2) embedded in noise fields. We found systematic effects of
global shape complexity on detection performance, demonstrating how aspects of global shape and form
influence the basic process of object detection.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A central function of the visual system is the ability to segregate
visual objects from cluttered backgrounds. A simple laboratory
approximation to this natural task is contour detection, in which
subjects are asked to detect relatively collinear chains of oriented
elements amid fields of randomly oriented elements. The large
literature on this task (Field, Hayes, & Hess, 1993; Hess & Field,
1995; Pettet, McKee, & Grzywacz, 1998; Hess & Field, 1999;
Field, Hayes, & Hess, 2000; Li & Gilbert, 2002; Geisler, Perry,
Super, & Gallogly, 2001; Yuille, Fang, Schrater, & Kersten, 2004;
Wilder, Singh, & Feldman, 2015) has shed light on the mechanisms
underlying what the Gestaltists called ‘‘good continuation” (mean-
ing grouping into smoothly elongated patterns), and has proved
revealing about the organization of primary visual cortex. Because
this literature has primarily focused on basic processes of orienta-
tion selectivity and contour integration, most studies have used
targets consisting of simple open contours (‘‘open” meaning that
they lack self-intersections, i.e. do not loop).

By comparison, the detection of closed contours (contours that
meet at their ends) has been studied relatively rarely (e.g. Pizlo,
Salach-Golyska, & Rosenfeld, 1997). A closed contour defines not

only the contour itself but also a bounded interior region (Koffka,
1935). As a result, closed contours pose a number of theoretical
and experimental problems not present with open ones. The shape
of the enclosed region can be parameterized in a multitude of
ways, leaving it extremely unclear exactly what shape properties
might be important in the process of detection. It is unclear, for
example, whether global aspects of the shape of the enclosed
region play a role in detection above and beyond the local
properties of the bounding contour. More broadly, it is unclear
whether known principles of open contour detection can be simply
extended to the closed case, or whether new principles specific to
whole forms will have to be introduced.

Contour closure is known to convey a detection advantage
above and beyond that of the combined local relations among con-
stituent contour elements (Kovacs & Julesz, 1993; Braun, 1999;
Mathes & Fahle, 2007). However (Tversky, Geisler, & Perry, 2004)
argued that the detection advantage for closed contours can simply
be explained via probability summation (the transitivity rule of
Geisler & Super (2000)). It is not clear, however, how transitivity
would explain other benefits conferred on closed contours. For
example, judgments about the aspect ratio of a contour are more
accurate when the contour is closed than when it is open
(Saarinen & Levi, 1999). Closed contours are processed more
efficiently than open ones (Elder & Zucker, 1993), which gives rise
to an advantage in remembering and recognizing them (Garrigan,
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2012). Altmann, Bülthoff, and Kourtzi (2003) found that the visual
system gives special treatment to a chain of elements that could be
perceived as a shape (i.e. a closed contour) over individual ele-
ments or an open contour. Others have found that the advantage
for closed contours is driven by a preference for explanations of
visual data that involve fewer objects over those that treat each
element as an object unto itself (Murray, Kersten, Olshausen,
Schrater, & Woods, 2002; Murray, Schrater, & Kersten, 2004;
Fang, Kersten, & Murray, 2008; He, Kersten, & Fang, 2012).

Computational procedures for detecting closed contours in nat-
ural images have been extensively studied, primarily in applied
contexts such medical imaging analysis, for example to analyze
the shape of the interior of arteries and the heart ventricles
(Guttman, McVeigh, & Prince, 1992; Guttman, Prince, & McVeigh,
1994), or to detect the boundaries of blood vessels (Yuan, Lin,
Millard, & Hwang, 1999). Kass, Witkin, and Terzopoulos (1988)’s
active contour model (sometimes known as the snake algorithm),
has been employed successfully to find closed contours in natural
images. While active contours often work with an edge map output
by standard edge detection algorithms, newer algorithms for active
contours work directly on the original image without an edge
detection step. For example, the edgeless active contour algorithm
of Chan and Vese (1999) and Chan and Vese (2001) has found suc-
cess at finding contours on a variety of images, even very noisy
images. Additionally, this algorithm can be used to find the bound-
aries between fuzzy objects without edges, or where the bound-
aries are not defined by image gradients. This relates directly to
the stimuli in the experiments below, which contain closed con-
tours embedded in random pixel noise. Standard edge detection
algorithms fail to detect the target contours our stimuli at all, while
human observers are able to detect them with ease, suggesting a
substantial discrepancy between known algorithms and the mech-
anisms of the human visual system.

Previous work on the human visual system’s thresholds for
detecting shapes on blank backgrounds and the role of the shape’s
complexity has given mixed results (see Zusne, 1970 for a review).
Much of this work measured detection thresholds for small shapes
of uniform luminance over a dark background. Cheatham (1952)
was unable to find an effect of complexity on detection thresholds.
Other authors (Bitterman, Krauskopf, & Hochberg, 1954; Engstrand
& Moeller, 1962; Hochberg, Gleitman, & Macbride, 1948;
Krauskopf, Duryea, & Bitterman, 1954) used compactness (the ratio
of the perimeter squared to the area) as a measure of complexity,
and found that it was correlated with detection thresholds. For
example, a five-pointed star is less easily detected than a circle.
Kincaid, Blackwell, and Kristofferson (1960) describe a model that
can account for the data connecting compactness to detection.
Their model is a neural model in which the visual system responds
to the presentation of a shape with a propagation of excitation,
resulting in ‘‘fronts” of excitation meeting at a point resulting in
an even larger amount of activiation which facilitates in the detec-
tion of the shape—anticipating the grassfire procedure described
later by Blum (1973) and the more recent shock graphs of
Siddiqi, Shokoufandeh, Dickinson, and Zucker (1998). However
none of these early studies resolved the question of whether shape
complexity influences detection of shapes in noise, nor developed
the principled connection between detection and complexity that
we propose below.

1.1. Statistical properties of contours

Many modern accounts of perceptual processes involve the idea
that the visual system is optimized to the statistics of natural stim-
uli (Barlow, 1961; Geisler, 2008). Along these lines, a number of
approaches to contour detection exploit statistical properties of
natural contours. Several studies have shown that the visual

system’s implicit assumptions about the statistics of contour struc-
ture mirror those of contours in natural images (Elder & Goldberg,
2002; Geisler et al., 2001), and that contour integration can be
understood as optimal or near-optimal probabilistic inference
(Claessens & Wagemans, 2008; Feldman, 2001; Ernst et al.,
2012). More specifically, a number of studies have suggested that
the visual system’s implicit probabilistic contour model assumes
that ‘‘smooth” contours exhibit turning angles that are approxi-
mately von Mises distributed (Feldman, 1997; Feldman & Singh,
2005; Singh & Fulvio, 2005; Singh & Fulvio, 2007; Wilder et al.,
2015). The turning angle a is the deviation of the contour from
its tangent direction, and can be thought of as a discretization of
curvature.1 The von Mises distribution is the angular analog of the
Gaussian (see Mardia, 1972). This model assumes that along a
smooth curve turning angles are distributed approximately as

pðaÞ / exp cosba; ð1Þ
where b is the parameter of the von Mises model analogous to the
precision 1=r2 of a Gaussian.

Eq. (1) provides a probabilistic generative model of smooth con-
tours, and allows a number of predictions to be formulated about
the characteristics of contour detection performance. In particular,
Wilder et al. (2015) showed how it gives rise to a natural definition
of contour complexity. Shannon (1948) defines Description Length
(DL) as

DL ¼ � logpðMÞ; ð2Þ
where M is a quantity being measured, and pðMÞ is the probability
of obtaining that measurement (Cover & Thomas, 1991). The DL
expresses the idea that a measurement is informative to the extent
that it is ‘‘surprising” under a given probability model, and is a nat-
ural measure of complexity because it is the length of the shortest
expression ofM in an optimal code. Using this definition, if we think
of a contour as a series ½ai� of turning angles generated indepen-
dently and i.i.d. under the von Mises model pðaÞ, then it follows that
the DL of the contour is expressed by the integrated DL along the
curve

DLðCONTOURÞ ¼ �
X
i

logpðaiÞ ð3Þ

/ �b
X
i

cosai;

(see Feldman & Singh, 2005). This DL measure quantifies how
unpredictable the contour is—how much it ‘‘zigs and zags” relative
to the smooth expectation expressed by the von Mises model.
Wilder et al. (2015) showed that contours with higher complexity
in this sense are more difficult for subjects to detect, with perfor-
mance declining with increasing DL.

In what follows, we extend this reasoning to the case of closed
contours. The mathematical argument is similar in the closed case
in that again complexity is defined as � log p for a suitable proba-
bilistic model. But closed contours present a more substantial chal-
lenge because of the difficulty in defining a suitable probability
model for them. Such a model would need to incorporate not only
the local structure of the bounding contour, but also probabilistic
regularities in the shape of the bounded region, which are much
harder to quantify. Below we introduce such a model, and show
how it gives rise to a set of interconnected shape and contour com-
plexity measures. For simple open contours, the integrated DL is
closely related to conventional (non-probabilistic) measures of
contour complexity; for example the contour DL is related to the
total squared contour curvature, a factor previously known to
affect human performance. In contrast, the closed contour DL

1 More technically, a � Dsj, where j is the local curvature and Ds is the stepsize in
arclength s; see Singh and Feldman, 2013.
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