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a b s t r a c t

Scenes filled with moving objects are often hierarchically organized: the motion of a migrating goose is
nested within the flight pattern of its flock, the motion of a car is nested within the traffic pattern of other
cars on the road, the motion of body parts are nested in the motion of the body. Humans perceive
hierarchical structure even in stimuli with two or three moving dots. An influential theory of hierarchical
motion perception holds that the visual system performs a ‘‘vector analysis’’ of moving objects, decom-
posing them into common and relative motions. However, this theory does not specify how to resolve
ambiguity when a scene admits more than one vector analysis. We describe a Bayesian theory of vector
analysis and show that it can account for classic results from dot motion experiments, as well as new
experimental data. Our theory takes a step towards understanding how moving scenes are parsed into
objects.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Motion is a powerful cue for understanding the organization of
a visual scene. Infants use motion to individuate objects, even
when it contradicts property/kind information (Kellman & Spelke,
1983; Xu & Carey, 1996; Xu, Carey, & Welch, 1999). The primacy
of motion information is also evident in adult object perception
(Burke, 1952; Flombaum & Scholl, 2006; Mitroff & Alvarez, 2007)
and non-human primates (Flombaum et al., 2004). For example,
in the tunnel effect (Burke, 1952; Flombaum & Scholl, 2006;
Flombaum et al., 2004), an object passing behind an occluder is
perceived as the same object when it reappears despite changes
in surface features (e.g., color), as long as it reappears in the time
and place stipulated by a spatiotemporally continuous trajectory.

In addition to individuating and tracking objects, motion is used
by the visual system to decompose objects into parts. In biological
motion, for example, the motion of body parts are nested in the
motion of the body. Object motion may be hierarchically organized
into multiple layers: an arm’s motion may be further decomposed
into jointed segments, including the hand, which can itself be
decomposed into fingers, and so on (Johansson, 1973).

The hierarchical organization of motion presents a formidable
challenge to current models of motion processing. It is widely
accepted that the visual system balances motion integration over

space and time (necessary for solving the aperture problem) and
motion segmentation in order to perceive multiple objects
simultaneously (Braddick, 1993). However, it is unclear how sim-
ple segmentation mechanisms can be used to build a hierarchically
structured representation of a moving scene. Segmentation lacks a
notion of nesting: when an object moves, its parts should move
with it. To understand nesting, it is crucial to represent the under-
lying dependencies between objects and their parts.

The experimental and theoretical foundations of hierarchical
motion perception were laid by the pioneering work of
Johansson (1950), who demonstrated that surprisingly complex
percepts could arise from simple dot motions. Johansson proposed
that the visual system performs a ‘‘vector analysis’’ of moving sce-
nes into common and relative motions between objects (see also,
Shum and Wolford (1983)). In the example of biological motion
(Johansson, 1973), the global motion of the body is subtracted from
the image, revealing the relative motions of body parts; these parts
are further decomposed by the same subtraction operation.

While the vector analysis theory provides a compelling expla-
nation of numerous motion phenomena (we describe several
below), it is incomplete from a computational point of view, since
it relies on the theorist to provide the underlying motion compo-
nents and their organization; it lacks a mechanism for discovering
a hierarchical decomposition from sensory data. This is especially
important in complex scenes where many different vector analyzes
are consistent with the scene. Various principles have been pro-
posed for how the visual system resolves this ambiguity. For exam-
ple, Restle (1979) proposed a ‘‘minimum principle,’’ according to
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which simpler motion interpretations (i.e., those with a shorter
description length) are preferred over more complex ones (see
also, Attneave (1954) and Hochberg and McAlister (1953)). While
such description length approaches are formally related to the
Bayesian approach described below, Restle only developed his
model to explain a small set of parametrized motions under noise-
less conditions. Gogel (1974) argued for an ‘‘adjacency principle,’’
according to which the motion interpretation is determined by
relative motion cues between nearby points. The ‘‘belongingness
principle’’ (DiVita & Rock, 1997) holds that relative motion is deter-
mined by the perceived coplanarity of objects and their potential
reference frames. However, there is still no unified computational
theory that can encompass all these ideas.

In this paper, we recast Johansson’s vector analysis theory in
terms of a Bayesian model of motion perception—Bayesian vector
analysis. The model discovers the hierarchical structure of a mov-
ing scene, resolving the ambiguity of multiple vector analyses
using a set of probabilistic constraints. We show that this model
can account qualitatively for several classic phenomena in the
motion perception literature that are challenging for existing mod-
els. We then report a new experiment to demonstrate that the
model can also provide a good quantitative fit to human data.

2. Bayesian vector analysis

In this section, we describe our computational model formally.1

We start by describing a probabilistic generative model of motion—a
set of assumptions about the environment that we impute to the
observer. The generative model can be thought of as stochastic
‘‘recipe’’ for generating moving images, consisting of two parts: a
probability distribution over trees, and a probability distribution
over data (image sequences) given a particular tree. We then
describe how Bayesian inference can be used to invert this genera-
tive model and recover the underlying hierarchical structure from
observations of moving images. Specifically, the goal of inference is
to find the motion tree with highest posterior probability.
According to Bayes’ rule, the posterior P(treejdata) is proportional
to the product of the likelihood P(datajtree) and the prior P(tree).
The likelihood encodes the fit between the data and a hypothetical
tree, while the prior encodes the ‘‘goodness’’ (in Gestalt terms) of
the tree.

2.1. Generative model

The generative model describes the process by which a

sequence of two-dimensional visual element positions snðtÞf gN
n¼1

is generated, where snðtÞ ¼ ½s x
nðtÞ; s

y
n ðtÞ� encodes the x and y position

of element n at time step t. Most experimental demonstrations of
vector analysis have used moving dot displays. A good example
are point-light walkers. For these demonstrations each moving
dot is naturally represented by its 2-d position on the screen at
each time point. This representation, of course, assumes that basic
perceptual preprocessing has taken place and the correspondence
problem has been solved. Although we will only model moving
dot displays in this paper, and hence snðtÞ is usually the position
of the nth dot at time t; snðtÞ could also be the position of an object,
a visual part, or a feature. In the following, we will simply refer to
the elements whose movement we want to analyze as either dots
or objects.

The object positions are modeled as arising from a tree-struc-
tured configuration of motion components; we refer to this repre-
sentation as the motion tree. Each motion component is a

transformation that maps the current object position to a new
position. An illustration of a motion tree is shown in Fig. 1. Each
node in the tree corresponds to a motion component. The motion
of the train relative to the background is represented by the top-
level node. The motions of Spiderman and Dr. Octopus relative to
the train are represented at the second-level nodes. Finally, the
motions of each body part relative to the body are represented at
the third-level nodes. The observed motion of Spiderman’s hand
can then be modeled as the superposition of the motions along
the path that runs from the top node to the hand-specific node.
The aim for our model is to get as inputs the retinal motion of
pre-segmented objects—in this example, the motion of hands, feet,
torsos, windows, etc.—and output a hierarchical grouping that
reflects the composition of the moving scene.

The motion tree can capture the underlying motion structure of
many real-world scenes, but inferring which motion tree generated
a particular scene is challenging because different trees may be
consistent with the same scene. To address this problem, we need
to introduce a prior distribution over motion trees that expresses
our inductive biases about what kinds of trees are likely to occur
in the world. This prior should be flexible enough to accommodate
many different structures while also preferring simpler structures
(i.e., parsimonious explanations of the sensory data). These
desiderata are satisfied by a nonparametric distribution over trees
known as the nested Chinese restaurant process (nCRP; Blei,
Griffiths, & Jordan, 2010). The nCRP is a generalization of the
Chinese restaurant process (Aldous, 1985; Pitman, 2002), a dis-
tribution over partitions of objects. A tree can be understood as a
nested partition of objects, where each layer of the tree defines a
partition of objects, and thus a distribution over trees can be con-
structed by recursively sampling from a distribution over parti-
tions. This is the logic underlying the nCRP construction.

The nCRP generates a motion tree by drawing, for each object n,
a sequence of motion components, denoted by cn ¼ ½cn1; . . . ; cnD�,
where D is the maximal tree depth.2 The probability of assigning
object n to component j at depth d is proportional to the number
of previous objects assigned to component j (Mj). This induces a sim-
plicity bias, whereby most objects tend to be assigned to a small
number of motion components. With probability proportional to c,
an object can always be assigned to a new (previously unused)
motion component. Thus, the model has ‘‘infinite capacity’’ in the
sense that it can generate arbitrarily complex motion structures,
but will probabilistically favor simpler structures. Mathematically,
we can write the component assignment process as:

Pðcnd ¼ jjc1:n�1Þ ¼
Mj

n�1þc if j 6 J
c

n�1þc if j ¼ J þ 1

(
ð1Þ

where J is the number of components currently in use (i.e., those for
which Mj > 0). Importantly, the assignment at depth d is restricted
to a unique set of components specific to the component assigned at
depth d� 1. In this way, the components form a tree structure, and
cn is a path through the tree. The parameter c P 0 controls the
branching factor of the motion tree. As c decreases, different objects
will tend to share the same motion components. Thus, the nCRP
exhibits a preference for trees that use a small number of motion
components.

Fig. 2 (top panel) shows how a tree is generated by successively
adding objects. Starting from the left, a single object follows a path
(indicated by orange shading) through 3 layers of the motion tree.
Note that the initial object always follows a chain since no other
branches have yet been created. The second object creates a new

1 Matlab code implementing the model is available at https://github.com/
sjgershm/hierarchical_motion.

2 As described in Blei et al. (2010), trees drawn from the nCRP can be infinitely
deep, but we impose a maximal depth for simplicity.
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