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a b s t r a c t

The psychometric function describes how an experimental variable, such as stimulus strength, influences
the behaviour of an observer. Estimation of psychometric functions from experimental data plays a cen-
tral role in fields such as psychophysics, experimental psychology and in the behavioural neurosciences.
Experimental data may exhibit substantial overdispersion, which may result from non-stationarity in the
behaviour of observers. Here we extend the standard binomial model which is typically used for psycho-
metric function estimation to a beta-binomial model. We show that the use of the beta-binomial model
makes it possible to determine accurate credible intervals even in data which exhibit substantial overdis-
persion. This goes beyond classical measures for overdispersion—goodness-of-fit—which can detect
overdispersion but provide no method to do correct inference for overdispersed data. We use Bayesian
inference methods for estimating the posterior distribution of the parameters of the psychometric func-
tion. Unlike previous Bayesian psychometric inference methods our software implementation—psignifit
4—performs numerical integration of the posterior within automatically determined bounds. This avoids
the use of Markov chain Monte Carlo (MCMC) methods typically requiring expert knowledge. Extensive
numerical tests show the validity of the approach and we discuss implications of overdispersion for
experimental design. A comprehensive MATLAB toolbox implementing the method is freely available;
a python implementation providing the basic capabilities is also available.
� 2016 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In psychophysics, experimental psychology and the behavioural
neurosciences, researchers attempt to measure detection or dis-
crimination behaviour as a function of stimulus level, i.e. some
changeable aspect of the stimulus or experimental setup controlled
by the researcher. The range of applications is vast, from simple
detection of spots of lights or Gabor patches to categorical percep-
tion of faces in experimental psychology and from discrimination
performance of a single neuron up to the behaving animal in neu-
roscience. After data collection, researchers frequently fit a psycho-
metric function to their data—almost always an appropriately

scaled cumulative probability density function—relating the inde-
pendent variable on the abscissa to the observer’s behaviour on
the ordinate. Researchers then obtain the ‘‘threshold” and, some-
times, the slope from the estimated psychometric function. Detec-
tion or discrimination behaviour, or performance, is thus
summarised using one or two values, namely the threshold and
the slope.

Thus fitting the psychometric functions to experimental data is
of central importance for many fields. Given this importance, much
research was conducted to either investigate the efficiency and
reliability of the data collection (e.g. Blackwell, 1952; Watson &
Pelli, 1983; Green, 1990; Treutwein, 1995; García-Pérez, 1998;
Kontsevich & Tyler, 1999; Jäkel & Wichmann, 2006; Shen &
Richards, 2012) or how to obtain accurate estimates of the psycho-
metric function parameters (e.g. O’Regan & Humbert, 1989;
Treutwein & Strasburger, 1999; Wichmann & Hill, 2001a;
Knoblauch & Maloney, 2012).
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However, unless one has collected infinitelymany trials per psy-
chometric function, theparameters of thepsychometric functionare
not fully constrained by the data and there remains uncertainty
regarding theestimatedparameters. Tobeable todrawvalid conclu-
sions when comparing thresholds and slopes from different experi-
mental conditions, it is essential that this uncertainty is quantified.
Typically, the uncertainty is expressed in the form of confidence
intervals around the point estimates. Unfortunately, a reliable and
accurate characterisation of this uncertainty is more difficult to
obtain than the estimates themselves, partly due to the small size
of typical datasets collected during behavioural experiments.1

The bootstrap (Efron, 1979; Efron & Tibshirani, 1994) was the
first numerical sampling method applied to psychophysical data
in order to characterise the uncertainty of the point estimates,
i.e. to obtain confidence intervals (Foster & Bischof, 1987;
Maloney, 1990; Foster & Bischof, 1991, 1997; Wichmann & Hill,
2001b).2 Hill (2002) showed, however, that bootstrapped confidence
intervals in the context of psychometric function estimation can be
too small, a result confirmed by both Kuss et al. (2005) and Fründ,
Haenel, and Wichmann (2011).3

As an alternative to the bootstrap, Bayesian statistics,4 is centred
on the notion of how to quantify uncertainty, and thus Bayesian
statistics, too, offers a suitable theoretical framework to analyse data
obtained in psychophysics, experimental psychology and the beha-
vioural neurosciences. Bayesian statistics is, furthermore, especially
suited for the small datasets (sample sizes) typically gathered in
behavioural experiments. Kuss et al. (2005) provide a detailed and
tutorial-style introduction to Bayesian inference for psychometric
functions, and show results from numerical simulations suggesting
that credible intervals obtained from Bayesian inference are more
accurate than those obtained using the bootstrap. Similar results
were later obtained by Fründ et al. (2011).

Bayesian inference for psychometric functions cannot be per-
formed analytically, and instead has to rely on numerical methods
to obtain the posterior distribution of the parameters given the
data. Both Kuss et al. (2005) and Fründ et al. (2011) use Markov
chain Monte Carlo (MCMC) methods to generate samples from
the posterior distribution over parameters. MCMC is a standard
method in Bayesian inference in general, and, in principle, allows
Bayesian inference to be performed on many statistical problems.
Unfortunately MCMC requires considerable statistical expertise
from the user to fine tune the proposal distribution and the sam-
pling step size, and especially to detect when the sampling fails.
MCMC methods thus rarely work ‘‘automatically” with no or little

user intervention the way analytical methods and the bootstrap do.
Kuss et al. aptly summarise the problem in their paper: A difficulty
of the proposed method is that using Markov chain Monte Carlo meth-
ods is nontrivial and requires the Markov chains to be inspected and
parameters to be set by the user. In practice, the parameters are found
in a trial-and-error procedure. Kuss et al. (2005, p. 491). For many
researchers in psychophysics, experimental psychology and the
behavioural neurosciences this difficulty precludes the use of the
MCMC-based Bayesian methods introduced by Kuss et al. (2005)
and Fründ et al. (2011), and they still have to rely on the easier
to use, albeit less accurate, bootstrap-based methods, e.g. the psig-
nifit 2.5 toolbox by Wichmann and Hill (2001a, 2001b).

Finally, there is one more hurdle for inferring the uncertainty
about the psychometric function parameters: overdispersion.
Overdispersionmeans that the variance of themeasured data is lar-
ger than expected from the binomialmodel, whichmay happen due
to fluctuations in attention, vigilance, criteria or unmodelled
aspects of the stimulus. Consequently all estimates of the uncer-
tainty based on the binomial model become too small, whether
based on Bayesian or on frequentist statistics if the data are overdis-
persed. To prevent this, early approaches used goodness-of-fit mea-
sures like deviance to detect overdispersion but could only suggest
to reject overdispersed datasets (Wichmann & Hill, 2001b). Later
Fründ et al. (2011) presented amethod to performa post hoc correc-
tions of error bars for overdispersed datasets. However there has
been no method which directly incorporated overdisperion in psy-
chometric function fitting, despite the fact that the beta-binomial
model for overdispersed binomial data has been well established
for many years (Williams, 1982; McCullagh & Nelder, 1989, chap.
4.5, exercise 4.17; also see Venables & Ripley, 2013, chap. 7.5).

1.1. Contributions of this paper

The contributions of the current paper are fourfold:

1. We extend psychometric function modelling from the standard
binomial to a beta-binomial model to capture overdispersion.
We show that this model not only allows statistical inference
from overdispersed data from a beta-binomial observer, but
yields reasonable results for other sources of overdispersion,
e.g. stemming from several types of serial dependencies
(Sections 3.1 and 3.2).

2. We show that fitting a beta-binomial model provides a way of
detecting overdispersion consistent with goodness-of-fit mea-
sures. In contrast with these approaches which can merely
reject overdispersed data, this method allows valid statistical
inference even for overdispersed data.5

3. We introduce a pain-free method for Bayesian inference for
psychometric functions. First, we compute the posterior distri-
bution of the parameters using numerical integration without
the need for MCMC sampling techniques and any user interven-
tion. Second, we suggest default priors and parameters for the
Bayesian inference which in our simulations and experience
yield good results, again without user intervention.6 Third, we
provide an implementation of the method, psignifit 4, coded in
pure MATLAB7 without dependencies on external code (such as
mex-files) or other toolboxes, which eases the installation for
the user, and helps the platform-independence.

1 Much of conventional statistics relies on the asymptotic behaviour of estimators
and probability distributions, i.e. relies on—ultimately infinitely—large datasets.
Wichmann and Hill (2001a, 2001b) showed that, for the typical size of psychophysical
datasets, methods based on asymptotic theory are not always reliable.

2 Note that the ‘‘confidence intervals” estimated in the frequentist statistical
framework, e.g. via the bootstrap, are not the same as the ‘‘credible intervals”
obtained from Bayesian statistics. For a discussion of this difference in the context of
psychometric functions see Kuss, Jäkel, and Wichmann (2005), p. 480–481. We
always calculate credible intervals in what follows. For readers unfamiliar with the
distinction, Bayesian credible intervals are what most people intuit when they think
about confidence intervals, whereas the frequentist confidence intervals do not
provide this Hoekstra, Morey, Rouder, and Wagenmakers (2014).

3 Knoblauch and Maloney (2012) provide a comprehensive and clearly presented
different approach to psychometric function estimation using the well-established
framework of generalised linear models (GLMs). Their GLM approach benefits from a
broad array of existing tests, confidence intervals, and software implementations.
However, fitting asymptotes requires an alternation between the fitting of the GLM
and fitting the asymptotes and the methods available to calculate confidence intervals
are either based on asymptotic distributions for the parameter estimates or on
bootstrapping. Thus the GLM approach provides no alternative approach for
uncertainty assessment and, thus, no principled treatment of overdispersion.

4 Detailed treatments of Bayesian statistics be found in many available textbooks,
for example in O’Hagan (1994), Gelman et al. (2013), Jaynes (2003), and Kruschke
(2014).

5 Assuming, of course, that the data are reasonably well modelled using a sigmoidal
function.

6 Expert users can, of course, override any of the default choices in the software
implementation, see the third sense of being pain-free.

7 Similarly the python implementation does not require the user to compile code or
link-in compiled binaries; furthermore, it does not require the user to install ‘‘exotic”
packages.
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