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a b s t r a c t

Most of the theory supporting our understanding of classification images relies on standard signal detec-
tion models and the use of normally distributed stimulus noise. Here I show that the most common
methods of calculating classification images by averaging stimulus noise samples within stimulus-
response classes of trials are much more general than has previously been demonstrated, and that they
give unbiased estimates of an observer’s template for a wide range of decision rules and non-Gaussian
stimulus noise distributions. These results are similar to findings on reverse correlation and related meth-
ods in the neurophysiology literature, but here I formulate them in terms that are tailored to signal detec-
tion analyses of visual tasks, in order to make themmore accessible and useful to visual psychophysicists.
I examine 2AFC and yes-no designs. These findings make it possible to use and interpret classification
images in tasks where observers’ decision strategies may not conform to classic signal detection models
such as the difference rule, and in tasks where the stimulus noise is non-Gaussian.

� 2016 Elsevier Ltd. All rights reserved.

1. Classification images in a very general decision model

Classification images have proven to be a useful tool for inves-
tigating visual processing in a wide range of tasks (Ahumada, 1996,
2002; Murray, 2011). In a classification image experiment we
introduce many small fluctuations into a stimulus, and measure
the influence of these fluctuations on observers’ responses. One
appealing feature of this approach is that it probes observers’
strategies in a very open-ended way. Instead of using, say, propor-
tion correct or reaction timemeasurements to choose between two
or three candidate models, a classification image experiment gives
a highly flexible description of how observers make visual judge-
ments, and can reveal features of visual processing that may not
have been anticipated by the experimenter (e.g., Ahumada, 1996;
Gold, Murray, Bennett, & Sekuler, 2000; Neri & Heeger, 2002).

However, most of the theory for understanding classification
images is based on a few standard models from signal detection
theory (e.g., Abbey & Eckstein, 2002; Murray, Bennett, & Sekuler,
2002). As a result, this highly flexible method actually seems to
depend on rigid assumptions about visual processing, such as the
assumption that observers make 2AFC decisions by calculating a
decision variable from each stimulus interval, and choosing the
interval with the higher decision variable. Furthermore, there have
long been doubts about whether these assumptions are always
correct (e.g., Treisman & Leshowitz, 1969; Yeshurun, Carrasco, &

Maloney, 2008), and this raises the question of what classification
images tell us about observers’ strategies when these assumptions
fail.

In addition, some interesting results have come from studies
where standard methods of calculating classification images are
applied to new tasks that are not described well by the models that
were originally used to justify the standard methods. For example,
classification images have been measured in visual search tasks
(Rajashekar, Bovik, & Cormack, 2006; Saiki, 2008), which are not
instances of the yes-no or 2AFC tasks that underlie the justifica-
tions for standard classification image methods, and for which
there is no broad agreement about the correct psychophysical
model. Here classification images are used outside the domain
where they are well understood theoretically, and so again there
is room for questions about exactly what they tell us about obser-
vers’ strategies.

Similarly, Pritchett and Murray (2015) used classification
images to estimate observers’ decision variables on individual tri-
als, and then they used these estimates to study observers’ decision
rules in 2AFC tasks. The previous literature suggests that this
approach is problematic, because the classification image methods
that Pritchett and Murray used have been justified using a specific
model of 2AFC decision making (the difference rule), whereas it is
precisely the decision rule in 2AFC tasks that Pritchett and Murray
are attempting to investigate.

The most widely used methods of calculating classification
images are based on averages of Gaussian stimulus noise within
stimulus-response classes of trials (Abbey & Eckstein, 2002;
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Ahumada, 2002; Murray et al., 2002). I will call these conditional
average methods. (An example of a method outside this category
is estimating classification images using the generalized linear
model, e.g., Knoblauch and Maloney (2008).) Here I show that con-
ditional average methods of calculating classification images are
far more general than has been previously demonstrated, and that
they give unbiased estimates of observers’ templates for a wide
range of decision rules and non-Gaussian stimulus noise distribu-
tions. The main assumption behind these results is simply that
the observer’s responses are mediated by the dot product of a tem-
plate with the stimulus. To show that non-Gaussian noise can be
used in classification image experiments, I also assume that each
noise element has only a small influence on the observer’s
responses.

First I discuss classification images measured using Gaussian
noise in a 2AFC task, and then using Gaussian noise in a yes-no
task. Finally I discuss classification images measured using non-
Gaussian noise in a yes-no task.

1.1. Classification images in a 2AFC task

I use upper case letters for matrices and random variables, and
lower case letters for scalar constants. I use bold font for images
and templates, which I represent as column vectors.

1.1.1. The task
In a 2AFC task there are two stimulus intervals, which I will

label as k = 1, 2. In each interval the observer views a stimulus sk + -
Nk, where sk is a signal and Nk is noise. I assume that Nk is a linear
transformation of independent and identically distributed (i.i.d.)
Gaussian noise: Nk = AMk, where Nk is an n � 1 vector, A is an
n �m matrix and Mk is an m � 1 vector of Gaussian noise with
each element an i.i.d. sample from Nð0;r2

MÞ. In practice, A is usually
a convolution, which can produce i.i.d. noise (if A is the identity
matrix) or correlated noise. The two signals g1 and g2 appear in
random order, and I represent the signal order with a random vari-
able S that takes value 1 or 2 to indicate which stimulus interval g1
appeared in. Thus the signal in interval 1 is s1 = gS and the signal in
interval 2 is s2 = g3-S. The observer’s task is to judge which stimulus
order was shown. I represent the observer’s responses with a ran-
dom variable R that takes value 1 or 2 to indicate which stimulus
interval the observer judged signal g1 to be in.

1.1.2. The observer model
I assume that the observer’s responses are based on decision

variables D1 and D2 that are calculated from the two stimulus
intervals. I assume that the stimulus affects the decision variable
for stimulus interval k via a dot product of the stimulus with a tem-
plate tk.

Ek ¼ ðsk þ NkÞTtk ð1Þ

Here T is matrix transposition. I call Ek the ‘external component of
the decision variable’. I allow different templates tk for the two
stimulus intervals. The decision variable Dk is some function of
the random variable Ek and a multivariate random variable Vk that
represents trial-to-trial fluctuations that are independent of the
stimulus noise, such as internal noise that the observer adds to
the external component of each decision variable.

Dk ¼ f ðEk;VkÞ ð2Þ

To describe the observer’s decision rule, I define the decision space
as

Hðx1; x2Þ ¼ PðR ¼ 2jD1 ¼ x1;D2 ¼ x2Þ ð3Þ

This is the probability of the observer choosing response 2 given the
values of the decision variables D1 and D2. I do not rely on the usual
assumption that 2AFC decisions are based on the difference rule
(Tanner & Swets, 1954), which says:

Hðx1; x2Þ ¼
1 if x2 6 x1
0 otherwise

�
ð4Þ

Here the criterion x2 6 x1 assumes that the templates tk have a
higher response to signal g2 than to g1; if they have a higher
response to g1, then the criterion is x1 6 x2. Instead of assuming
Eq. (4), as previous studies have done (e.g., Abbey & Eckstein,
2002), I allow the decision space H(x1, x2) to be an arbitrary function
from R2 to [0, 1].

In this observer model there is a redundancy between the inter-
nal variability Vk and the decision space H, because any random-
ness in the observer’s responses caused by Vk could be absorbed
into the decision space. However, I will keep this redundancy
because it allows us to separately describe channel noise using
Vk (e.g., additive Gaussian noise) and decision noise using H (e.g.,
randomness due to probability matching (Murray, Patel, & Yee,
2015)), and so it makes the observer model more easily relatable
to common signal detection models.

1.1.3. The classification image
Conditional average methods of calculating a classification

image in a 2AFC task are based on the average of stimulus noise
samples within stimulus-response classes of trials. In Appendix A
I derive the conditional expected value E[M1|S = 1, R = 2], where
M1 is the Gaussian i.i.d. noise used to generate the stimulus noise
N1 = AM1 in the first stimulus interval. I show that:

E½M1jS ¼ 1;R ¼ 2� / ATt1 ð5Þ
That is, the expected value of the noise vector M1 is either zero or
proportional to the observer’s template, transformed by the trans-
pose of the matrix A used to generate the stimulus noise. If AT is
invertible, then the conditional expected value of (AT)-1M1 = A�TM1

is either zero or proportional to the template t1. This means that
the average of the samples of A�TM1 on all trials where S = 1 and
R = 2 gives an unbiased estimate of the template t1 that the observer
uses in the first stimulus interval. Alternatively, if we wish to use
the stimulus noise N1 = AM1 to estimate the template, then we
can take the average of the samples of A�TA�1N1 on all trials where
S = 1 and R = 2.

The derivation in Appendix A shows that Eq. (5) is true regard-
less of the observer’s decision space (i.e., the function H in Eq. (3)).
Thus conditional average methods do not rely on specific assump-
tions about observers’ decision rules, such as the difference rule in
Eq. (4), but instead can be used whenever the stimulus affects the
observer’s responses via a dot product, as in Eq. (1).

This result can be explained simply and informally as follows.
Starting with Eq. (1), the external component of the decision vari-
able is

Ek ¼ ðsk þ NkÞTtk ð6Þ
¼ sTktk þ ðAMkÞTtk ð7Þ
¼ sTktk þMT

kðATtkÞ ð8Þ
The shift in parentheses from Eqs. (7) to (8) shows that applying a
template tk to filtered noise AMk gives the same result as applying
a transformed template ATtk to i.i.d. noise Mk. If the stimulus affects
the observer’s responses only via a template, then i.i.d. noise that is
orthogonal to the template can have no effect on the observer’s
responses, and the expected value of the i.i.d. noise in a stimulus-
response class of trials can only be zero or proportional to the
template. Thus the expected value of M1 in a stimulus-response
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