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a b s t r a c t

In order to develop transformation invariant representations of objects, the visual system must make use
of constraints placed upon object transformation by the environment. For example, objects transform
continuously from one point to another in both space and time. These two constraints have been
exploited separately in order to develop translation and view invariance in a hierarchical multilayer
model of the primate ventral visual pathway in the form of continuous transformation learning and tem-
poral trace learning. We show for the first time that these two learning rules can work cooperatively in
the model. Using these two learning rules together can support the development of invariance in cells
and help maintain object selectivity when stimuli are presented over a large number of locations or when
trained separately over a large number of viewing angles.
� 2016 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In vision, it is important to correctly identify an object in the
environment as being the same despite changes in the retinal
image. Over successive stages in the visual system, neurons
develop response properties that are invariant to the size, position,
and view of an object (Rolls, 1992; Rolls, 2000; Rolls & Deco, 2002;
Desimone, 1991; Tanaka, Saito, Fukada, & Moriya, 1991). Cells in
inferior temporal cortex (IT) that show invariance to the transla-
tion (Op de Beeck & Vogels, 2000; Kobotake & Tanaka, 1994; Ito,
Tamura, Fujita, & Tanaka, 1995; Tovee, Rolls, & Azzopardi, 1994),
size (Rolls & Baylis, 1986; Ito et al., 1995), contrast (Rolls &
Baylis, 1986), lighting (Vogels & Biederman, 2002), spatial fre-
quency (Rolls, Baylis, & Leonard, 1985; Rolls, Baylis, & Hasselmo,
1987), and view (Hasselemo, Rolls, Baylis, & Nalwa, 1989; Booth
& Rolls, 1998) of objects have been reported.

Developing invariant recognition of objects involves associating
together representations of the same object under different condi-
tions. In the particular case of translation invariance, this would
mean developing associations between the neural representations
of an object in different spatial locations on the retina. In order to
develop these associations, the visual system can exploit con-
straints placed upon object translation by the environment. For
example, when an object translates from one point to another, it

does so in a manner that is continuous in both space and time.
These same constraints can be exploited for the development of
view invariance, as different views of an object also appear in a
spatially and temporally continuous manner.

One method for developing translation invariant representa-
tions utilizes the temporally continuous nature of object transla-
tion. Neurophysiological evidence suggests that the brain might
use this type of information to develop translation invariant repre-
sentations of objects (Li & DiCarlo, 2008). As breaking temporal
continuity causes neurons to lose their selective responses to dif-
ferent objects. Different approaches have been developed in order
to understand how the brain might exploit this temporally conti-
nuity, such as using inputs representing temporal context to guide
learning (Becker, 1999), learning high probability sequences of
visual input in order to infer the object being presented (George
& Hawkins, 2005), and extracting slowly changing features in the
visual inputs to analyze the transform invariant representations
(Berkes & Wiskott, 2005; Wiskott & Sejnowski, 2002).

Temporal information can also be used to develop invariant
representations of objects by incorporating a temporal trace into
associative learning rules (Földiák, 1991; Rolls, 1992; Wallis &
Rolls, 1997). This encourages neurons to respond to stimulus
image transforms that occur close together in time. The advantage
of this approach is that it can arise naturally out of biophysically
realistic spiking neural networks when longer time constants for
synaptic conductance are introduced (Evans & Stringer, 2012).
Increasing this time constant keeps the neuron active for longer
as it lengthens the time period over which current leaks into the
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postsynaptic neuron, thus allowing temporal trace learning to
occur. Therefore, it is feasible that this type of learning could occur
in the brain without requiring a specific architecture to operate.

A second method for developing translation and view invari-
ance, known as continuous transformation (CT) learning, depends
on the spatial continuity of object transformation (Stringer, Perry,
Rolls, & Proske, 2006). As an object moves smoothly from one loca-
tion to another, it will also appear in several intermediate posi-
tions. Each of these intermediate positions will be highly
overlapping with the adjacent locations that the object appears
in as it moves across the environment. Therefore, each of these
adjacent locations would be likely to activate a common post-
synaptic neuron that associates each of the positions together. This
would result in the cell developing translation invariant response
properties.

Each of the methods discussed so far consider how spatial and
temporal constraints could each individually contribute to the
development of invariant representations. However, in the real
world, information provided by each of these constraints is avail-
able to the visual system simultaneously. Psychophysical evidence
suggests that object-selective view-invariant recognition is
improved when stimuli transform in a temporally and spatially
continuous manner, compared to spatially continuous transforma-
tion alone (Perry, Rolls, & Stringer, 2006). It is important to under-
stand how an observer might simultaneously utilize the benefits of
spatial and temporal continuity in object transformation when
developing invariant representations. This effect could be
explained by the visual system using CT learning and temporal
trace learning in tandem.

In this paper, we will explore how CT learning and temporal
trace learning can operate together to help develop view and trans-
lation invariance using a hierarchical model of the ventral visual
pathway, VisNet (Wallis & Rolls, 1997; Rolls & Milward, 2000),
illustrated in Fig. 1. Both trace and CT learning have been tested
extensively in the rate-coded VisNet model (Wallis & Rolls, 1997;
Stringer et al., 2006), and so we shall use VisNet to study how these
two learning mechanisms may be combined in the same rate-
coded model.

2. Methods

2.1. The VisNet model

2.1.1. Hierarchical neural network architecture of the model
The architecture of the model used in this paper, VisNet (Wallis

& Rolls, 1997), is developed according to the following principles:

(i) A series of hierarchical competitive networks with local
graded inhibition and excitation.
(ii) Convergent connections to each neuron from a topologically
corresponding region of the preceding layer.
(iii) Synaptic plasticity based on a biologically-plausible local
learning rule, such as the Hebb rule or trace rule.

As mentioned above, the forward connections to individual cells
in VisNet are derived from a topologically corresponding location
in the preceding layer. The probability of each connection forming
follows a Gaussian distribution. These distributions are defined by
a radius containing approximately 67% of the connections from the
preceding layer. The values employed in the current study are
given in Table 1. The gradual increase in the receptive field of cells
in successive layers reflects the known physiology of the primate
ventral visual pathway (Freeman & Simoncelli, 2011; Pasupathy,
2006; Pettet & Gilbert, 1992).

2.1.2. Pre-processing of the visual input by Gabor filters
Before images are presented to layer 1 of VisNet, they are pre-

processed by a set of Gabor filters that correspond to the known
response profiles of V1 simple cells (Jones & Palmer, 1987;
Cumming & Parker, 1999). Filtering the images produces a unique
set of inputs that are then presented to layer 1 of the model. The
input filters used are computed by the following equations:

gðx; y; k; h;w;r; cÞ ¼ exp � x02 þ c2y02

2r2

� �
cos 2p x0

k
þ w

� �
ð1Þ

with the following definitions:

x0 ¼ x cos hþ y sin h

y0 ¼ �x sin hþ y cos h
ð2Þ

where x and y specify the position of a light impulse in the visual
field (Petkov & Kruizinga, 1997), r controls the number of such
periods inside the Gaussian window, h defines the orientation of
the feature, w defines the phase, and c sets the aspect ratio that
determines the shape of the receptive field. In each experiment,
an array of Gabor filters is generated at each of 256� 256 retinal
locations with the parameters given in Table 2.

The outputs of the Gabor filters are passed to the neurons in
layer 1 of VisNet according to the synaptic connectivity given in
Table 1. Each layer 1 neuron received connections from 400 ran-
domly chosen Gabor filters within a topologically corresponding
region of the retina.
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Fig. 1. (Left) A schematic representation of VisNet. The model consists of a hierarchy of competitive networks with feed-forward connections between them. Convergence in
the model is designed so that cells in the final layer of the model have a receptive field that covers the whole of the input retina. (Right) Convergence in the visual system. V1,
visual cortex area V1; TEO, posterior inferior temporal cortex; TE, inferior temporal cortex (IT).
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