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a b s t r a c t

Local image statistics are important for visual analysis of textures, surfaces, and form. There are many
kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented
segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much
less is known about visual processing when multiple kinds of statistics are relevant, in large part because
the dimensionality of the problem is high and different kinds of statistics interact. To approach this prob-
lem, we focused on binary images on a square lattice – a reduced set of stimuli which nevertheless taps
many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to
each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities
and isodiscrimination contours were consistent across observers. Isodiscrimination contours were ellip-
tical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination sur-
faces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations
of statistics. These predictions, including the prediction of a combination of statistics that was metameric
to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over
the range from 2.8 to 14 min, but sensitivities to second- and higher-order statistics was substantially
lower at 1.4 min. In sum, local image statistics form a perceptual space that is highly stereotyped across
observers, in which different kinds of statistics interact according to simple rules.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of image statistics underlies many key components
of intermediate visual processing, including not only visual texture,
but also visual characterization of surfaces and segmentation of
images into objects. Although each of these tasks might at first
seem deterministic, each is fundamentally statistical. For example,
identification of surface materials (such as wood, grass, or hair) is
not carried out by matching the image to a stored sample, but
rather, by their image statistics, such as the range of contrasts
and colors and the distribution of oriented contours at different
scales (Karklin & Lewicki, 2009). Segmentation of an image is a sta-
tistical task as well, because it is fundamentally ambiguous: multi-
ple scene interpretations are consistent with a single image, and
image statistics play a key role in assessing which one is chosen
as the most plausible. For example, contours due to a shadow or
change in illumination are not typically coincident with a change
in material properties, while real object boundaries typically have
such changes, and hence, changes in image statistics.

Thus, understanding the processing of image statistics has
broad importance as part of a foundation for understanding many

aspects of intermediate visual processing. Visual textures, the focus
here, present image statistics in their purest form.

While natural textures are characterized by many kinds of sta-
tistical features, systematic approaches to studying visual texture
(with few exceptions (Motoyoshi & Kingdom, 2007; Saarela &
Landy, 2012; Victor, Chubb, & Conte, 2005)) usually explore just
one kind of feature, such as luminance distributions (Chubb,
Econopouly, & Landy, 1994; Chubb, Landy, & Econopouly, 2004),
color (Li & Lennie, 1997), orientation (Landy & Oruc, 2002;
Wolfson & Landy, 1995, 1998), or curvature (Ben-Shahar &
Zucker, 2004). There are two main reasons for this. One is the high
dimensionality of the problem: if all kinds of statistical features
were explored, the number of parameters (i.e., the number of dif-
ferent image statistics) would be impractically large. The other is
that image statistics exhibit a high degree of interdependency.
Edges cannot exist without local changes in luminance, and cor-
ners cannot exist without edges at multiple orientations, so these
statistics cannot be considered to be independent attributes.
Here, we attempt to address both issues, by constructing a texture
space of large but manageable dimension (10), whose coordinates
take into account the interactions implied by geometry. The data
show that once these steps are taken, the perceptual interactions
of image statistics obey simple rules that (a) are highly consistent
across subjects, (b) accurately predict sensitivity to complex
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combinations of image statistics, and (c) are approximately pre-
served across a range of spatial scales.

To overcome the problem of high dimensionality (specifically,
that an image statistic can be defined from the joint probabilities
of any set of gray levels at any configuration of nearby points),
we restricted consideration to black-and-white images on a
checkerboard. By restricting the analysis to a single scale and only
two luminance levels, we can then consider all possible local
images statistics – i.e., the probabilities of all configurations of
black and white checks within a 2 � 2 neighborhood. This set of
image statistics has 10 free parameters (summarized here in
Methods; detailed in (Victor & Conte, 2012)). It encompasses not
only the intuitively-important features of luminance, contrast,
edge, and corner, but also, its four-point correlations are indepen-
dently informative for natural images (Tkačik et al., 2010). Thus,
although it is a reduced space, it has image statistics of many dif-
ferent types and levels of complexity.

To overcome the second hurdle, the interdependency of differ-
ent kinds of stimulus features, we used a ‘‘maximum-entropy’’
approach. That is, we specify stimuli by the prevalence of one or
more elementary features, and then synthesize an ensemble of
images that meet these specifications but are otherwise as random
as possible. This limits the interdependence of features to what is
implied by geometry, so that observed interactions at the level of
neural or perceptual responses can be more readily interpreted.

1.1. Texture space and color space: their geometry and its implications

The above considerations lead to the construction of a ‘‘texture
space’’, in which each point corresponds to a specific combination
of image statistics that together specify luminance distributions and
the prevalence of edges and corners at different orientations (Victor
& Conte, 2012). The experiments presented here determine the per-
ceptual distances in this space, focusing on the region near its origin.

The analogy with trichromatic color space provides a helpful
geometrical framework. In both color space and texture space,
points represent stimuli and the origin represents the neutral point
(in color space, a white light; here, the random texture). The pre-
sent experiments, which consist of measuring thresholds for per-
ceiving that a texture is not random, correspond to measuring
thresholds to changes in color and intensity near the white point.
In both spaces, a line segment space represents mixtures. In color
space, the points on a line segment are the colors that can be cre-
ated by mixing the lights that correspond to the endpoints. In the
space of local image statistics, the points on a line segment are the
textures that can be created by mixing the textures that corre-
spond to the endpoint. In color space, mixtures are created by
physical mixing of lights; here, mixtures are created at the level
of statistics: at the level of the frequency of each way that a
2 � 2 block can be colored with black and white checks (as
described in (Victor & Conte, 2012). In color space and in texture
space, a ray emanating from the origin corresponds to a set of stim-
uli that are progressively more saturated. Thus, determining the
point along this ray that is first discriminable from the origin is a
way of quantifying sensitivity to the combination of features rep-
resented by the direction of the ray. By determining the thresholds
for rays that emanate from the origin in many directions, one can
map out the ‘‘isodiscrimination surface,’’ which summarizes the
perceptual sensitivities in the neighborhood of the origin. In the
case of color space, the isodiscrimination surfaces are approxi-
mately ellipsoids (the ‘‘Macadam ellipses’’ (Macadam, 1942)), and
below we find that this holds in texture space as well.

The notion of navigating the space by moving along a straight
line trajectory brings up an important mathematical distinction
between the geometries of the two spaces. In color space, moving
along a line is straightforward: it corresponds to increasing or

decreasing the intensity of a light. For textures, this is not the case.
For example, increasing the number of edges may also increase the
number of intersections, and the proportionality between corners
and intersections is typically nonlinear. These nonlinear dependen-
cies underlie the maximum entropy approach (Victor & Conte,
2012) for navigating the space: a direction in the space corre-
sponds to a specified coordinate, and movement along this direc-
tion may take a curved path to minimize the introduction of
further structure. That is, the maximum-entropy approach yields
a locally flattened coordinate system. Here, since we are studying
discrimination thresholds, we work in these local coordinates,
and ignore the impact of global curvature.

Color space and texture space have other important differences,
and these allow us to interpret the sensitivity measurements in a
way that has no immediate analogy in color space. The differences
go beyond the difference in dimensionality or global curvature,
and trace back to a fundamental difference in the way that the coor-
dinate systems are defined. For color space, the origin of the coordi-
nate system – the white point – is defined subjectively. For image
statistics, the origin of the texture space has an a priori mathematical
definition: it is the texture in which each check is randomly and
independently assigned to black or white. A similar distinction
applies to the axes: for color space, axes are defined empirically
based on cone excitations (MacLeod & Boynton, 1979) or combina-
tions motivated by physiological and psychophysical measurements
(Derrington, Krauskopf, & Lennie, 1984); for image statistics, axes
are defined a priori mathematically, in terms of correlations.

The kind of geometry that applies to the two spaces is also differ-
ent (Zaidi et al., 2013). In color space, any of several coordinate sys-
tems (Derrington, Krauskopf, & Lennie, 1984; MacLeod & Boynton,
1979; Wyszecki & Stiles, 1967), each based on its own set of empir-
ical observations, are equally valid descriptions of the space.
Changing from one set of axes to another is a general linear trans-
formation, which means that distances and angles computed from
the coordinates in one system (via the Pythagorean rule and
dot-products) need not match values computed with another. In
the space of local image statistics, the coordinates are defined by
mathematical considerations. This means that there is a standard
definition of distance, and a ‘‘sphere’’ is a well-defined term: it is
the locus of points that are at an equal distance from its center.

Because of the mathematics underlying the texture-space coor-
dinates, spheres centered at the origin have another interpretation.
Specifically, spheres are the isodiscrimination surfaces for an ideal
observer ((Victor & Conte, 2012), Appendix B), i.e., an observer
who is able to make full use of all image statistics. Of course we do
not anticipate that human performance will resemble this. Rather,
we expect that human observers will be selective, and make use of
some image statistics more efficiently than others. This will distort
the human isodiscrimination surface away from a spherical shape.
For example, if sensitivity is reduced along one axis, then the isodis-
crimination surface will become elongated in that direction, into an
ellipsoid. If sensitivity is different for positive vs. negative changes in
a coordinate, the surface will be asymmetrically distorted (i.e., it will
become egg-shaped). If cues along different coordinates are not
combined, the shape of the isodiscrimination surface will become
squared-off. But as the results show, only the first kind of distortion
is prominent, and this enables a concise, predictively accurate model
for sensitivity to complex combinations of image statistics.

2. Methods

2.1. The stimulus space

The goal of these experiments is to determine visual sensitivity
to local image statistics, individually and in combination. To do
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