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Retinal image structure is due to a complex mixture of physical sources that includes the surface’s 3D
shape, light-reflectance and transmittance properties, and the light field. The visual system can somehow
discriminate between these different sources of image structure and recover information about the
objects and surfaces in the scene. There has been significant debate about the nature of the representa-
tions that are used to derive surface reflectance properties such as specularity (gloss). Specularity could

fﬂeywnfs: . be derived either directly from 2D image properties or by exploiting information that can only be derived
Shztgirrlla perception from representations in which 3D shape has been made explicit. We recently provided evidence that 3D
Closs & shape information can play a critical role in the perception of material specularity, but the shape manip-

ulation in our prior study also significantly changed 2D image properties (Marlow, Todorovi¢, &
Anderson, 2015). Here, we held fixed all monocularly visible 2D image properties and manipulated 3D
shape stereoscopically. When binocularly fused, the depicted 3D shapes induced striking transformations
in the surfaces’ apparent material properties, which vary from matte to ‘metallic’. Our psychophysical
measurements of perceived specularity reveal that 3D shape information can play a critical role in
material perception for both singly-curved surfaces and more complex geometries that curve in two
directions. These results provide strong evidence that the perception of material specularity can depend
on physical constraints derived from representations in which three-dimensional shape has been made
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explicit.
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1. Introduction

Retinal image structure arises from the interaction between a
surface’s three-dimensional (3D) shape, its reflectance and trans-
mittance properties, and the surrounding light field. Perceptual
experience reveals that our visual system somehow extracts these
distinct contributions to image structure, but there is no consensus
about how this computational feat is accomplished. Any local
image structure can be produced by an infinite number of different
combinations of shape, reflectance, and illumination, which sug-
gests that some additional information is required to determine
the particular combination responsible for a given image. The
inability to compute a unique inverse suggests that the visual sys-
tem solves this problem probabilistically, exploiting constraints on
the likelihood of the possible scene interpretations. One of the
main theoretical and empirical tasks is to identify the regularities
that the visual system uses to infer scene structure, and to
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characterize the representational space over which these con-
straints are defined.

The majority of work has focused on regularities that can be com-
puted directly from 2D images, which have been applied in a variety
of different domains. Some early work used image statistics to the-
oretically motivate efficient coding schemes of subcortical and early
cortical areas (Field, 1987; Olshausen & Field, 1996; Srinivasan,
Laughlin, & Dubs, 1982). Image statistics have also been used to
understand a variety of mid-level visual processes, such as contour
completion (Geisler & Perry, 2009; Geisler, Perry, Super & Gallogly,
2001), and the computation of surface reflectance (Fleming &
Biilthoff, 2005; Giesel & Zaidi, 2013; Liu et al., 2010), such as light-
ness (Motoyoshi et al., 2007; Sharan et al., 2008) and gloss
(Arce-Lopera et al., 2012; DelPozo & Savarese, 2007; Fleming,
Dror, & Adelson, 2003; Motoyoshi & Matoba, 2012; Motoyoshi
et al., 2007; Nishida & Shinya, 1998). However, it has been shown
that the perception of gloss depends on the spatial organization of
specular image structure, which cannot be derived from image
statistics that fail to capture that organization (Anderson & Kim,
2009; Kim & Anderson, 2010). In particular, we have previously
argued that perceived gloss depends on two photogeometric
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constraints: Orientation congruence and brightness congruence (Kim,
Marlow, & Anderson, 2011; Marlow, Kim, & Anderson, 2011).
Orientation congruence refers to the fact that local orientations of
specular reflections tend to run parallel to local orientations of dif-
fuse shading gradients (Anderson & Kim, 2009; Beck & Prazdny,
1981; Kim, Marlow, & Anderson, 2011, 2012; Marlow, Kim, &
Anderson, 2011). Brightness congruence refers to the fact that specu-
lar highlights are typically located close to the brightest regions of
diffuse shading (Marlow, Kim, & Anderson, 2011). The luminance
maxima on a glossy surface need to satisfy these constraints in order
to appear as specular reflections; highlights that violate these con-
straints appear as light pigment on a matte surface or a disconnected
overlay (e.g., Beck & Prazdny, 1981; Todd, Normal, & Mingolla,
2004). In principle, both of these constraints could be computed
directly from images. For example, orientation congruency may be
derived from orientationally selective image filters (or relatedly ori-
entation fields), and brightness congruency may be derived from the
position of a highlight relative to the luminance maxima and min-
ima of the surrounding luminance gradient.

The photo-geometric constraints described above provide some
insight into how the visual system identifies specular reflections,
but they do not explain how the perception of gloss can vary
between surfaces when both constraints are satisfied
(Doerschner, Boyaci, & Maloney, 2010; Fleming, Dror, & Adelson,
2003; Ho, Landy, & Maloney, 2008; Obein, Knoblauch, & Viénot,
2004; Olkkonen & Brainard, 2010, 2011; Pont & te Pas, 2006; te
Pas & Pont, 2005; Vangorp, Laurijssen, & Dutré, 2007; Wendt
et al., 2010; Wijntjes & Pont, 2008). We recently argued that per-
ceived gloss varies as a function of image cues that are predictive
of a surface’s gloss level (Marlow & Anderson, 2013; Marlow,
Kim, & Anderson, 2012). In particular, we showed that perceived
gloss is modulated by the contrast, sharpness, and ‘coverage’ of
specular image structure. Contrast refers to the difference in lumi-
nance between a specular reflection and its surround; sharpness
refers to the slope of the luminance gradient at the edge of a spec-
ular reflection; and coverage refers to the proportion of a surface
that generates visible specular reflections. High levels of physical
gloss typically generate higher levels of specular contrast, sharp-
ness, and coverage than do low levels of gloss (Berzhanskaya
et al., 2005; Billmeyer & O’'Donnell, 1987; Hunter & Harold, 1987;
Pellacini, Ferwerda, & Greenberg, 2000), but these image properties
can also vary dramatically as a function of a surface’s 3D shape or
the light field. We have shown that psychophysical measurements
of the apparent contrast, sharpness, and coverage of specular
reflections can predict how perceived gloss scales across a wide
range of 3D shapes, light fields, and physical gloss levels (Marlow
& Anderson, 2013; Marlow, Kim, & Anderson, 2012). Similar corre-
lations have been found when the psychophysical measurements
are substituted with computational measurements derived
directly from the image (Marlow, Kim, & Anderson, 2012; Qi
et al,, 2014).

The preceding theories suggest that our experience of surface
gloss could theoretically be derived from differences in image
structure, prior to an explicit representation of a surface’s 3D
geometry or the light field in which it is embedded. However,
the perception of gloss is a property associated with surfaces and
materials, and is therefore always accompanied by an experience
of 3D shape. Although many studies have speculated that 3D shape
representations may play a causal role in the computation of gloss,
their data do not provide conclusive evidence in support of this
view (e.g., Anderson & Kim, 2009; Beck & Prazdny, 1981;
Fleming, Dror, & Adelson, 2003; Ho, Landy, & Maloney, 2008;
Kim, Marlow, & Anderson, 2011; Marlow, Kim, & Anderson,
2011; Motoyoshi et al.,, 2007; Nishida & Shinya, 1998). Studies
have shown that perceived gloss depends on the stereoscopic
depth of specular reflections, which typically appear behind

convex surfaces (Blake & Biilthoff, 1990; Kerrigan & Adams,
2013; Muryy et al., 2013). However, the relevant 3D structure used
to derive material properties in these studies is not 3D shape rep-
resentations per se, but rather the difference in perceived depth
of the surface’s texture and shading relative to the depth of the
specular reflections.

In order to assess whether computations of gloss exploit infor-
mation explicitly derived from 3D representations of shape, image
structure must be held constant while the 3D shape associated
with that structure is varied. This requires constructing different
3D shapes that generate identical image gradients from two differ-
ent reflectance functions. Fig. 1A depicts luminance gradients gen-
erated by a diffuse (matte) surface and a rough specular surface
(such as unpolished metal) that have the same 3D structure
embedded in an identical illuminant. The matte surface on the left
depicts a Lambertian reflectance function that generates a lumi-
nance that varies as a cosine of the angle between the surface nor-
mal and the direction of the incident illumination. The luminance
projected by the specular surface on the right varies much more
rapidly than the Lambertian surface, particularly in the neighbor-
hood of the luminance maximum. The steepness of the specular
and diffuse luminance gradients depends on surface roughness
parameters, which modulate the ‘spread’ or ‘scatter’ of light within
the diffuse and specular lobes (Nicodemus, 1965; Oren & Nayar,
1994). If the visual system exploits these three-dimensional con-
straints to derive reflectance properties, then it should be possible
to generate identical image gradients that appear to be associated
with different reflectance properties if they are perceived as differ-
ent three-dimensional shapes.

The two surfaces in Fig. 1B provide our first attempt to test this
hypothesis (Marlow, Todorovic, & Anderson, 2015). The two figures
contain identical luminance gratings bounded by two different sets
of bounding contours along the left and right sides of the grating. It
has been shown previously that bounding contours affect the per-
ceived 3D shape, lightness, and illumination direction of image
gradients (Knill & Kersten, 1991; Ramachandran, 1988;
Todorovi¢, 2014; Witkin & Tenenbaum, 1983). In this example,
the left surface appears as three large half-cylinders (two convex
one concave) illuminated from the front, whereas the right surface
appears as three ridges and three valleys illuminated from above.
We showed that these two shapes also appear to differ in perceived
specular reflectance: The left surface appears matte, whereas the
right appears more specular, such as a rough metal (Marlow,
Todorovic¢, & Anderson, 2015).

The relationship between perceived shape and perceived reflec-
tance of the images in Fig. 1 suggests that the visual system derives
information about reflectance from the rate that luminance gradi-
ents vary relative to their 3D surface geometry. However, this is
not the only possible interpretation of the perceived material dif-
ference of these stimuli; there are image differences that could also
account for this result. The reflectance of the surfaces could theo-
retically be derived from correlations between the luminance gra-
dients and the local orientations of the bounding contours in the
2D images rather than being derived from 3D shape representa-
tions. Fig. 1C plots the grating’s luminance as a function of the
angle of the bounding contour. An angle of zero refers to the angle
of the bounding contour adjacent to the luminance maxima in the
grating. The graph shows that the rate of change in the luminance
of the grating along the bounding contour is slow for the matte
surface and rapid for the specular surface. Note that these func-
tions derived directly from the images mimic the functions derived
from the matte and specular 3D surfaces shown in Fig. 1A. Thus,
the change in perceived material properties in these images could
theoretically still be derived from image properties, rather than
something computed only once the representation of 3D shape
has been made explicit.
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