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In this study, process monitoring based on signal decomposition by use of singular spectrum

analysis (SSA) is considered. SSA makes use of adaptive basis functions to decompose a time

series  into multiple components that may be periodic, aperiodic or random. Two variants

of  SSA are considered in this investigation. In the first, the conventional approach is used

based on latent variables extracted from the covariances of the lagged trajectory matrix of

the process variables. The second approach is identical to the first approach, except that

the covariances of the lagged trajectory matrices are replaced by Euclidean distance dis-

similarities to decompose the variables into additive components. These components are

subsequently monitored and the merits of the two approaches are considered on the basis

of  two case studies using simulated nonlinear data and data from the benchmark Tennessee

Eastman process.

© 2016 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1.  Introduction

Several key drivers in modern chemical and metallurgical
industries have led to increased interest and adoption of data
driven innovations in process control and monitoring technol-
ogy. These include enhanced process safety, process efficiency,
and improved performance in achieving product quality spec-
ifications through the management of process variation. As a
result, large volumes of data are routinely logged and stored
in data warehouses, and can be used in fault detection and
diagnostic tasks in process operations. Owing to the highly
correlated nature of the observed process variables, the chal-
lenge associated with these process monitoring schemes is
the development of efficient modeling techniques that can
account for the relationships between process variables in
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order to detect faults in the process operations (Chiang et al.,
2001; Qin, 2003).

The most common multivariate statistical process mon-
itoring (MSPM) methods are principal component analysis
(PCA) and partial least squares (PLS) (Qin, 2003). However, PCA
and PLS assume linear relationships between variables and
Gaussian latent variables. Hence, PCA models can give mis-
leading information when applied to highly nonlinear systems
with large numbers of variables to monitor.

As a result, a plethora of nonlinear extensions to PCA have
been proposed to handle nonlinear processes, such as princi-
pal curves (Dong and McAvoy, 1996; Harkat et al., 2003; Shi
et al., 2013), independent component analysis (Kano et al.,
2003; Wang and Shi, 2010; Hsu et al., 2010), kernel methods
(Jemwa and Aldrich, 2005; Zhang and Qin, 2007; Deng et al.,

http://dx.doi.org/10.1016/j.cherd.2016.07.014
0263-8762/© 2016 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

http://www.sciencedirect.com/science/journal/02638762
www.elsevier.com/locate/cherd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cherd.2016.07.014&domain=pdf
mailto:chris.aldrich@curtin.edu.au
dx.doi.org/10.1016/j.cherd.2016.07.014


152  chemical engineering research and design 1 1 3 ( 2 0 1 6 ) 151–168

2013) and neural networks (Jia et al., 1998; Aradhye et al., 2002)
to name but a few. Another practical limitation in the applica-
tion of these multivariate statistical methods is that process
operations are nonstationary and dynamic in nature, which
may not be captured adequately with a single scale represen-
tation of the measurements. Likewise, classical MSPM can also
fail when measurements are autocorrelated (Ku et al., 1995).

In some instances, a more  effective approach would take
advantage of multiple representations of measurements, that
is, the representation of features that occur with different
localization in time, space and frequency (Aradhye et al.,
2003). Such multiscale process control methods combining
PCA and wavelets have been proposed by Kosanovich and
Piovoso (1997) and Bakshi (1998). In general, nonlinear and/or
multiscale extensions to PCA can be expected to give improved
performance in targeted use-cases. Even so, these methods
require large data sets to calibrate reference models, and the
added computational cost is challenging (Yunus and Zhang,
2014).

In other approaches, decomposition of the variables is
aimed at reconstruction of a common subspace, a specific sub-
space and a residual subspace. Monitoring is consequently
performed in every subspace (Zhang et al., 2013; Zhang and
Li, 2013; Zhang and Zhang, 2014). This can be particularly
effective when monitoring multimodal processes and the
transitions between modes.

To better summarize multivariate data in a lower
dimension than the conventional approach inspired the devel-
opment of MSPM frameworks using multidimensional scaling
(Auret and Aldrich, 2010; Yunus, 2012; Yunus and Zhang, 2014).
In that framework any measure of inter-distance scaling can
be modified and converted into a set of correlation matrix
based eigenvectors, which could subsequently be used in PCA
to project the variables to a lower-dimensional plane of latent
variables.

The same approach is followed in this paper via the use
of squared dissimilarity matrices in lieu of correlation matri-
ces as used conventionally in PCA. This approach can also
handle nonlinear correlations in the data like other nonlinear
methods in process monitoring (Yunus and Zhang, 2010).

In the area of chemical process monitoring, singular spec-
trum analysis (SSA) has become a promising tool to prefilter
process data before the application of multivariate statistical
process control (MSPC) tools for fault detection in the pro-
cess (Aldrich and Barkhuizen, 2003a, 2003b, 2003c; Barkhuizen
and Aldrich, 2003, 2004). Moreover, a multimodal method
for process monitoring based on SSA has previously been
proposed for the simultaneous extraction of complex trends
and periodicities with varying amplitude in the process data
(Krishnannair, 2010; Aldrich et al., 2007).

In this paper, these studies are extended by considering two
variants of SSA as a basis for process monitoring. The first is
based on the use of classical SSA (cSSA) (Golyandina et al.,
2001), while the second comprises modification of the SSA
decomposition stage based on dissimilarity scales, instead of
the variance-covariance association to quantify the relation-
ships between variables. This modification provides modeling
frameworks with SSA by using Euclidean distances as the dis-
similarity measure to develop scores in a reduced dimensional
space and will be referred to as dissimilarity based SSA (DSSA).

The application of DSSA is demonstrated using simulated
data and the Tennessee Eastman Challenge process and the
paper is organized as follows. Section 3 presents the method-
ology of basic SSA. In Section 3, the concept of classical

multidimensional scaling (CMDS) is introduced as a building
block for DSSA. The concept of DSSA is subsequently outlined
in Section 4. Sections 5 and 6 briefly explain the procedures of
cSSA and DSSA. The monitoring results of the proposed DSSA
and its comparison with cSSA and PCA using simulated data
and the Tennessee Eastman process are discussed in Section
7. Section 8 concludes the paper.

2.  Singular  spectrum  analysis

In this section the basic steps involved in SSA is briefly
explained with its applications in time series analysis.

2.1.  Singular  spectrum  analysis  of  univariate  time
series

Singular spectral time series analysis prefilters the original
time series into a sum of series that contains components such
as a trend, periodic or quasi-periodic components, or noise.
This is done by the singular value decomposition (SVD) of a
trajectory or lagged covariance matrix obtained from the orig-
inal time series, followed by reconstruction of the series using
subsets of eigenfunctions and corresponding principal com-
ponents. Standard PCA is performed on the trajectory matrix
of the time series and hence the mathematical and statistical
properties of PCA extend to SSA.

The time series is first embedded into an M-dimensional
space known as the trajectory matrix.  Singular value decompo-
sition is then applied to decompose the trajectory matrix into
a sum of elementary matrices. Subsequently, the elementary
matrices that contribute to the norm of the original matrix
are grouped, with each group giving an approximation of the
original matrix. Finally, the smoothed approximation of the
time series is recovered by diagonal averaging of the elemen-
tary matrices obtained from the decomposing the trajectory
matrix.

An outline of the basic SSA methodology (Golyandina et al.,
2001) and the procedural steps involved in SSA are discussed
in more  detail below (Jemwa and Aldrich, 2006; Hassani and
Thomakos, 2010; Krishnannair, 2010).

2.1.1.  Step  1:  Embedding
Given a time series yN = (y(1), y(2), . . .,  y(N)), that is embedded
with a window of length 2 ≤ M ≤ N to construct K = N − M + 1
lagged vectors: xi ∈ R

M

xi = [y(i), y(i + 1),  . . .,  y(i + M − 1)]T, 1 ≤ i ≤ K = N − M + 1 (1)

These embedded vectors xi are then collected into an array
or multidimensional time series known as a trajectory matrix:
X = (x1, x2, . . .,  xK)

X = (xij)
K,M
i,j=1

=

⎡
⎢⎢⎢⎣

y(1) y(2)

y(2) y(3)
· · · y(M)

y(M + 1)
...

. . .
...

y(K) y(K + 1) · · · y(N)

⎤
⎥⎥⎥⎦ (2)

The trajectory matrix X ∈ R
K×M is a Hankel matrix, that is

the matrix has equal elements on the antidiagonals, where
i + j = constant, or

xij = x(i + j − 1), 1 ≤ i ≤ K, 1 ≤ j ≤ M (3)
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