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a b s t r a c t

Humans display image-independent viewing biases when inspecting complex scenes. One of the
strongest such bias is the central tendency in scene viewing: observers favour making fixations towards
the centre of an image, irrespective of its content. Characterising these biases accurately is important for
three reasons: (1) they provide a necessary baseline for quantifying the association between visual fea-
tures in scenes and fixation selection; (2) they provide a benchmark for evaluating models of fixation
behaviour when viewing scenes; and (3) they can be included as a component of generative models of
eye guidance. In the present study we compare four commonly used approaches to describing image-
independent biases and report their ability to describe observed data and correctly classify fixations
across 10 eye movement datasets. We propose an anisotropic Gaussian function that can serve as an
effective and appropriate baseline for describing image-independent biases without the need to fit func-
tions to individual datasets or subjects.

� 2014 Elsevier Ltd. All rights reserved.

When we view complex scenes, where we look is influenced by
a combination of low-level scene statistics (Itti & Koch, 2000),
higher-level interpretation of the scene (Ehinger et al., 2009;
Einhäuser, Spain and Perona, 2008), task goals (Buswell, 1935;
Yarbus, 1967) and behavioural biases (Tatler & Vincent, 2009). If
we are to understand the relative contributions of these different
sources of guidance in scene viewing then techniques are required
for quantifying the extent to which decisions about where to look
can be attributed to each source.

At present, existing techniques can be categorised broadly into
two approaches. First, the statistical properties at the centre of gaze
can be quantified in order to measure how strongly a particular fea-
ture is associated with where gaze is directed (e.g., Pomplun, 2006;
Reinagel & Zador, 1999). Second, locations that are likely to be fix-
ated can be predicted based upon the distribution of statistical prop-
erties across an image and then the correspondence between the
distribution of human fixation locations and the regions predicted
as likely to be fixated from the statistical distribution can be assessed
(e.g., Torralba, Oliva, Castelhano, & Henderson, 2006).

Both approaches can be used to assess the potential correspon-
dence between a variety of low- or high-level features and fixation
selection: provided that the feature under investigation can be
quantified at each location in the scene, it is possible to quantify

the strength of that feature at fixation or its distribution over the
image. However, both approaches require a baseline measure in
order to consider whether the association between the feature
under test and fixation is greater than that expected by chance.
Typically, a randomly generated set of locations is used to sample
either the strength of the feature or the probability of selecting
locations that fall within the regions predicted as likely to be fix-
ated on the basis of the feature. The extent to which the control
locations and the fixated locations correspond with the feature
under test can then be used to assess whether any association
between the feature and fixation is greater than would be expected
by chance. A powerful and commonly used approach for making
this judgment is to use the signal detection theoretic measure of
the area under the receiver-operating-characteristics curve (see
Green & Swets, 1966). The manner in which the random locations
used as the baseline for such assessments are generated has impor-
tant implications for the manner in which findings can be inter-
preted and indeed can significantly impact on the results
(Henderson, Brockmole & Castelhano, 2007; Tatler, Baddeley &
Gilchrist, 2005).

One approach is to use a uniform distribution for selecting con-
trol locations (e.g., Einhäuser, Spain & Perona, 2008; Parkhurst,
Law & Niebur, 2002; Reinagel & Zador, 1999). Using such an
approach means that any association between fixation and the fea-
ture under test that is beyond that found in the baseline comparison
can be interpreted as suggesting that the feature is selected more
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than would be expected if the eyes were directed randomly around
a scene.

However, the existence of behavioural biases in how we view
scenes (Tatler, 2007; Tatler & Vincent, 2009) suggests that a uni-
form random baseline may misrepresent selection with respect
to features. That is, if the baseline comparison uses a uniform ran-
dom distribution for generating control locations, any association
found between fixation and features that extends beyond that in
the baseline condition is likely to reflect a combination of selection
based on image properties and image-independent biases in fixa-
tion behaviour. A more appropriate baseline for evaluating the
association between an image feature and fixation placement is
to select control locations from a distribution that reflects any
image-independent biases in viewing behaviour. The most promi-
nent and well-characterised image-independent bias in scene
viewing is the central fixation bias: humans preferentially fixate
the centre of the scene in a manner that is almost independent
of the scene displayed to observers (Tatler, 2007; Tseng et al.,
2009). As a result, control fixations can be drawn from distribu-
tions that reflect this central bias (see Tatler, 2007; Tatler,
Baddeley & Gilchrist, 2005, for discussion of this issue).

There exist a number of ways that are typically used to con-
struct a centrally-weighted distribution used in the baseline condi-
tion. One approach is to use a centred Gaussian to approximate the
central bias and this may be fitted to the overall distribution of fix-
ation locations in a dataset (Zhao & Koch, 2011), or scaled to the
aspect ratio of the images presented (Judd, Durand & Torralba,
2012). Alternatively, these control distributions may be generated
in ways that are aimed to maximise the chance of capturing any
individual viewing biases that participants display when viewing
scenes. There exist two main ways of attempting to capture indi-
vidual viewing biases in baseline samples of features. First, the
(x,y) locations of fixations on the test image can be used to sample
features at the same locations in another (randomly selected)
image (Parkhurst & Niebur, 2003). Second, (x,y) locations of fixa-
tions made by the same participant but when viewing different
images can be used to sample features on the test image (e.g.,
Tatler, Baddeley & Gilchrist, 2005; Tatler & Vincent, 2009).

At present, it is unclear whether and how these different
approaches to creating a baseline distribution vary in their suit-
ability. The present study compares distributions of fixations
across multiple existing datasets of eye movements in order to
consider whether a single common distribution might be an appro-
priate baseline across studies and individuals or whether it is nec-
essary to tailor the baseline distribution to each study and
individual.

Being able to capture the statistics of the baseline condition
appropriately is necessary for three reasons. First, if we wish to
consider the relative importance of any feature in decisions about
where to look, it is desirable to be able to quantify the unique var-
iance associated with the particular feature after removal of vari-
ance associated with other factors that may contribute to
decisions about where to look. In this way, any assessment of the
importance of visual information (low- or high-level) to fixation
selection should partial out variance that is associated with any
image-independent biases in looking behaviour. Thus, if we com-
pare the feature of interest to an appropriate baseline that
accounts for image-independent biases, then we are better able
to characterise associations between that feature and fixation
behaviour. This principle extends beyond simply evaluating low-
level salience models to any domain in which it is desirable to be
able to characterise the contribution of a particular source of infor-
mation to inspection behaviour. For example, in visual search par-
adigms, it is also useful to be able to remove any component of the
behaviour that is driven by looking biases that are unrelated to the
stimuli displayed.

Second, we can use this baseline as a benchmark for evaluating
models of eye movement behaviour in scene viewing, as employed
by Judd, Durand and Torralba (2012). Models should at least be
able to outperform a baseline model based on image-independent
biases such as looking at the centre of the screen. In their extensive
comparison of a range of different salience models, Judd, Durand
and Torralba (2012) found that only two models managed to out-
perform an image independent central bias baseline constructed
using an aspect ratio-scaled Gaussian distribution. As there
appears to be no empirical basis for this exact baseline, this may
in fact underestimate the amount of variance that can be
explained, and hence over-estimates the performance of the sal-
ience models.

Third, we can treat any image-independent bias as a factor in
eye movement control itself. Thus, if we can computationally
model these biases and derive appropriate characterisations of
these biases we can use these as a component of models of fixation
selection. That is, we can produce models with modules for low-
level information, high-level information and image-independent
biases. Given the strength of the central bias and its ability to pre-
dict human fixations, it is surprising that it is not more commonly
incorporated into computational models. Indeed in their review,
Judd, Durand and Torralba (2012) found only three studies that
explicitly included a central bias in their model: Parkhurst and
Niebur (2003) use the ‘‘shuffle’’ method; Zhao and Koch (2011) fit-
ted Gaussians to their data, but restricted their baseline to an iso-
tropic central bias, i.e., they fitted a covariance matrix with equal
horizontal and vertical variance; and Judd et al. (2009) used an iso-
tropic Gaussian fall-off that was stretched to match the aspect ratio
of the image. Other examples in the literature include Clarke, Coco
and Keller (2013) who used Euclidean distance from the centre of
the image, and Spain and Perona (2011) who used a wide range of
distance functions based on the Euclidean metric. Appropriate
characterisation of image-independent biases therefore will allow
appropriate and effective additions to existing models of fixation
selection.

In the present study we evaluated different approaches to char-
acterising baselines for understanding fixation behaviour when
viewing scenes. Using ten eye movements datasets, we compared
four ways of characterising image-independent biases in fixation
selection: (1) fitting an isotropic Gaussian to the data (as in Zhao
& Koch, 2011), (2) fitting a Gaussian scaled to the aspect ratio of
the images (as in Judd, Durand & Torralba, 2012), (3) anisotropic
Gaussians where the vertical and horizontal variances were fitted
to each dataset, and (4) anisotropic Gaussians where the vertical
and horizontal variances were fitted to each participant within
each dataset. The final two approaches attempt to capture any
experiment-specific (approach 3) or subject-specific (approach 4)
differences in image-independent biases and as such conform to
the recommendations made in previous discussions of this issue
(Borji, Sihite & Itti, 2013a, 2013b; Tatler, Baddeley & Gilchrist,
2005). By comparing across these four approaches we were able
to consider the relative ability of each approach for describing
the data effectively and also the impact that each approach has
upon our ability to classify fixated and control locations using each
approach. One potential problem with the subject-level fitting
(approach 4) is that this is likely to be sensitive to the sample size
of eye movements used to construct the baseline distributions.
This is a particular issue in studies with small numbers of trials
or short presentations times (hence few fixations per image). As
a result we considered how these approaches for describing the
baseline are influenced by small n. In all of these approaches an
empirical fit of the data is required to produce the baseline. We
considered whether this is really necessary or whether a general
purpose function can be employed that can be used irrespective
of the subject or experiment under investigation. Here we used
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