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a b s t r a c t

Although much recent work in perceptual learning (PL) has focused on basic sensory discriminations,
recent analyses suggest that PL in a variety of tasks depends on processes that discover and select infor-
mation relevant to classifications being learned (Kellman & Garrigan, 2009; Petrov, Dosher, & Lu, 2005). In
complex, real-world tasks, discovery involves finding structural invariants amidst task-irrelevant varia-
tion (Gibson, 1969), allowing learners to correctly classify new stimuli. The applicability of PL methods
to such tasks offers important opportunities to improve learning. It also raises questions about how learn-
ing might be optimized in complex tasks and whether variables that influence other forms of learning
also apply to PL. We investigated whether an adaptive, response-time-based, category sequencing algo-
rithm implementing laws of spacing derived from memory research would also enhance perceptual cat-
egory learning and transfer to novel cases. Participants learned to classify images of 12 different butterfly
genera under conditions of: (1) random presentation, (2) adaptive category sequencing, and (3) adaptive
category sequencing with ‘mini-blocks’ (grouping 3 successive category exemplars). We found significant
effects on efficiency of learning for adaptive category sequencing, reliably better than for random presen-
tation and mini-blocking (Experiment 1). Effects persisted across a 1-week delay and were enhanced for
novel items. Experiment 2 showed even greater effects of adaptive learning for perceptual categories con-
taining lower variability. These results suggest that adaptive category sequencing increases the efficiency
of PL and enhances generalization of PL to novel stimuli, key components of high-level PL and fundamen-
tal requirements of learning in many domains.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Attaining expertise in many domains depends on changes in the
way information is extracted – perceptual learning (Gibson, 1969;
Kellman & Garrigan, 2009). In the last two decades, work in cogni-
tive and neural sciences has witnessed a resurgence of interest in
perceptual learning (PL). Most of this recent work has focused on
simple sensory dimensions using a few specific stimulus values.
In contrast, the focus of earlier PL research (Gibson, 1969) and
the application of PL in virtually all real-world tasks involves dis-
covery of invariance amidst variation.

These emphases relate to different scientific purposes. In the
work of Eleanor Gibson, and in some recent work (e.g., Kellman
& Massey, 2013; Kellman, Massey, & Son, 2010), the focus is on
understanding how changes in information extraction advance
performance in complex domains and real-world settings. The fo-

cus of many contemporary researchers on basic discriminations
using a small set of simple stimuli relates to attempts to under-
stand the neural bases of PL, especially receptive field changes in
early cortical areas (e.g., Fahle & Poggio, 2002).

Much recent work suggests that learning effects in both so-
called low-level and high-level PL tasks often involve common
principles and mechanisms, specifically discovery of what informa-
tion makes the difference in classifications being learned (Ahissar
& Hochstein, 1997; Kellman & Garrigan, 2009; Petrov, Dosher, &
Lu, 2005). In work on basic sensory discriminations, for example,
data have tended to favor models emphasizing selective re-weight-
ing of analyzers rather than receptive field changes (Petrov,
Dosher, & Lu, 2005), and many PL results appear to be incompatible
with explanation primarily in terms of changes in early receptive
fields (Ahissar, 1999; Crist, Li, & Gilbert, 2001; Garrigan & Kellman,
2008; Ghose, Yang, & Maunsell, 2002; Liu, 1999; Wang et al., 2012;
Xiao et al., 2008; for discussion, see Kellman & Garrigan, 2009).

The emphasis on discovery processes that lead to weighting of
the most relevant analyzers strongly mirrors Gibson’s (1969)
emphasis on selection of relevant structure; in fact, Gibson often
used ‘‘differentiation learning’’ as a synonym for PL. Contemporary
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models based on selection of analyzers place the focus within the
nervous system, whereas selection of information or discovery of
invariants in the world places the focus outside the organism and
onto the environment, but clearly these are two sides of the same
coin (assuming that analyzers pick up relevant information from
the environment). Findings that PL appears to occur only for con-
stancy-based information, rather than any arbitrary sensory invari-
ant, also implicate learning processes focused on extracting
functionally relevant environmental properties (Garrigan &
Kellman, 2008).

Understanding that PL processes involve discovery and selec-
tion of information not only helps to unify various PL tasks and re-
sults but has direct practical implications. Recent work suggests
that domain-specific changes in information extraction attained
through PL comprise a much larger component of expertise than
is often understood (Kellman & Garrigan, 2009). This is true even
in high-level, symbolic domains, such as mathematics, chess, and
reading (Chase & Simon, 1973; De Groot, 1965; Goldstone, Landy,
& Son, 2008; Kellman & Massey, 2013; Kellman, Massey, & Son,
2010; Thai, Mettler, & Kellman, 2011), where PL functions syner-
gistically with other aspects of cognition. Learning technology
based on PL, in the form of perceptual learning modules (PLMs),
has been shown to accelerate crucial and otherwise elusive aspects
of learning, including pattern recognition, transfer, and fluency, in
domains as diverse as aviation training (Kellman & Kaiser, 1994),
mathematics learning (Kellman, Massey, & Son, 2010; Massey
et al., 2011), and medical learning (Krasne et al., 2013; Guerlain
et al., 2004; Kellman, 2013).

The realization of the importance of PL in diverse learning tasks
and the emergence of PL interventions raise the question of
whether PL shares principles that have been found to improve or
optimize other kinds of learning. When we learn new perceptual
classifications, what principles govern successful learning? Are
there ways of organizing the order of presentation of material such
that learning is enhanced? Such questions form the basis for the
following studies, which investigate effective training strategies
for enhancing perceptual learning – especially when learning con-
cerns sets of categories or natural kinds.

1.1. Spacing and memory

One of the most robust and enduring findings in research on
memory for factual items concerns the benefits of spaced practice
relative to those of non-spaced practice. ‘‘Spaced’’ practice means
repeated exposure of an item following delays or presentation of
intervening items. In general, longer delays are more beneficial
than shorter delays, up to some maximum after which the benefit
to learning decreases (Benjamin & Tullis, 2010; Cepeda et al., 2008;
Glenberg, 1976). Maximum benefit may occur when re-presenta-
tion of an item is just prior to – and no later than – the moment
that its decaying memory trace becomes irretrievable; that is,
items are best re-presented just before they are forgotten. Experi-
mental evidence suggests that the value of a presentation of an
item increases with the difficulty of successful retrieval (Benjamin,
Bjork, & Schwartz, 1998; Pyc & Rawson, 2009). Pyc and Rawson
(2009) labeled this idea the ‘‘retrieval effort hypothesis’’: More dif-
ficult, but successful, retrievals are more beneficial.

Substantial data suggest that producing difficult but successful
retrievals can be accomplished by expanding spacing during the
course of learning. Expanding retrieval practice has been studied
for nearly half a century (Cull, Shaughnessy, & Zechmeister,
1996; Landauer & Bjork, 1978; Pimsleur, 1967). Explanations of
the value of expanded retrieval intervals usually invoke or assume
an underlying notion of learning strength that increases with re-
peated presentations of an item. Learning strength can be thought
of as a hypothetical construct related to probability of successful

recall on a future test. When a new item is presented, learning
strength may be low, but it typically increases with additional
learning trials.

Although a preset schedule of expanding spacing intervals
across trials will tend to correlate with increasing learning
strength, the match may be far from perfect. Even if learning
strength increases monotonically, preset intervals may expand
too much or not enough. Moreover, learning of particular items
by particular individuals may produce different courses of improv-
ing learning strength, and learning strength may actually be a
non-monotonic function of trials, depending on item difficulty
and relations among items being learned. Ideal spacing intervals,
from the standpoint of the retrieval difficulty hypothesis, might in-
volve, not predetermined intervals, but flexible spacing that
matches current learning strength. Arranging learning to approxi-
mate such an ideal would benefit from an ongoing indicator of
learning strength, one which might vary for different learners,
items, and their interactions.

1.2. The ARTS system

Evidence indicates that response time (RT) is a useful indicator
of retrieval difficulty, and thus of an item’s current learning
strength (Karpicke & Bauernschmidt, 2011; Pyc & Rawson, 2009).
This relationship offers a useful way of updating spacing to track
underlying learning strength: Adaptive methods can use an indi-
vidual’s accuracy and RT performance data for learning items to
dynamically schedule spacing intervals. Mettler, Massey, and
Kellman (2011) showed that a system that determines spacing
dynamically based on each learner’s accuracy and speed in interac-
tive learning trials (the Adaptive Response-Time-based Sequencing
or ARTS system) produced highly efficient learning and compared
favorably with a classic adaptive learning system (Atkinson, 1972).

ARTS uses a priority score system, in which the priority for an
item to reappear on each learning trial is computed as a function
of accuracy, response time, and trials since the last presentation.
The system also implements mastery criteria based on both accu-
racy and speed. As learning strength increases, as reflected in per-
formance, delay intervals automatically expand in this system.
Because all items compete for presentation on any trial, through
their priority scores, the system concurrently implements adaptive
spacing for all learning items. (See the Method section for further
detail on the ARTS system.)

ARTS was designed to test principles of learning and memoriza-
tion of factual items (e.g., Mettler, Massey, & Kellman, 2011), but it
can be applied to perceptual category learning as well, in cases
where there are multiple categories to be learned. This situation
occurs in many real world tasks, such as a dermatologist learning
to identify different kinds of skin lesions, an air traffic controller
learning to recognize different types of aircraft, or a chemist learn-
ing to recognize different types of molecular structures. In adaptive
category sequencing, the ARTS system tracks learners’ accuracies
and response times in order to assess the learning strength of cat-
egories. Each category is given a dynamically updated priority
score, reflecting the relative importance of an exemplar of that cat-
egory appearing on the next learning trial.

1.3. Relationship between perceptual learning and factual learning

Although it is clear how adaptive spacing might be applied to
PL, it is not clear whether the same principles of spacing and
expanding the retrieval interval that improve item memory would
enhance PL. There have not been many studies of PL in real-world
learning domains, and there has been even less work exploring the
conditions that optimize such learning. These two kinds of learning
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