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a b s t r a c t

A common computation in visual cortex is the divisive normalization of responses by a pooled signal of
the activity of cells within its neighborhood. From a geometrical point of view, normalization constraints
the population response to high-contrast stimuli to lie on the surface of a high-dimensional sphere. Here
we study the implications this constraint imposes on the representation of a circular variable, such as the
orientation of a visual stimulus. New results are derived for the infinite dimensional case of a homoge-
neous populations of neurons with identical tuning curves but different orientation preferences. An
important finding is that the ability of the population to discriminate between any two orientations
depends exclusively on the Fourier amplitude spectrum of the orientation tuning curve. We also study
the problem of encoding by a finite set of neurons. A central result is that, under normalization, optimal
encoding can be achieved by a finite number of neurons with heterogeneous tuning curves. In other
words, increasing the number of neurons in the population does not always allow for an improved pop-
ulation code. These results are used to estimate the number of neurons involved in the coding of orien-
tation at one position in the visual field. If the cortex were to code orientation optimally, we find that a
small number (�4) of neurons should suffice.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The gain control model extended the classic linear–nonlinear
model of simple cells (Movshon, Thompson, & Tolhurst, 1978) to
account for a number of response properties, including response
saturation, phase advance of temporal responses with contrast,
and the results of masking experiments using plaid stimuli (Bonds,
1989; Carandini, Heeger, & Movshon, 1997; Heeger, 1992; Robson,
1988). The basic idea of the model is that an initial set of responses,
provided by direct input from other brain regions, gets normalized
(divided) by a pooled signal of neuronal activity in the neighbor-
hood a cell (Fig. 1).

Progress over the last decade has shown that such normaliza-
tion is a widespread computation in the brain; it can be found in
the retina (Benardete, Kaplan, & Knight, 1992; Shapley & Victor,
1979a, 1979b, 1981; Solomon, Lee, & Sun, 2006), the lateral genic-
ulate nucleus (Bonin, Mante, & Carandini, 2005, 2006), primary vi-
sual cortex (Carandini et al., 1997; Heeger, 1992; Ringach &
Malone, 2007; Rust, Schwartz, Movshon, & Simoncelli, 2005), area
MT (Simoncelli & Heeger, 1998), and area IT (Zoccolan, Cox, & DiC-
arlo, 2005). Furthermore, normalization models appear to account
well for the modulatory effects of attention (Reynolds, Chelazzi, &
Desimone, 1999; Reynolds & Heeger, 2009).

The prevalence of normalization in the nervous system must
surely reflect the fact that it evolved to address a problem that arises

at different stages of processing (Douglas & Martin, 2004, 2007).
From a theoretical point of view, this observation prompts a number
of interesting questions. What basic principles of signal processing
would lead to normalization of responses to be a critical component
of neural computation? How does normalization impact the way
stimuli can be encoded and processed? What are the computational
capabilities of networks of normalized populations?

Some recent studies have considered how normalization modi-
fies the statistical dependencies of neural activity, and have put
forward the idea that normalization may serve to optimize the rep-
resentation of natural signals (Fairhall, Lewen, Bialek, & de Ruyter
Van Steveninck, 2001; Olshausen & Field, 1996a, 1996b, 2004;
Ruderman & Bialek, 1994; Schwartz & Simoncelli, 2001). Others
have noted that normalization may also serve a role in decoding
the activity of neuronal populations (Deneve, Latham, & Pouget,
1999). Here we take complementary approach and ask not why,
but how is that the representation of information constrained
when carried by the signals of a normalized pool of neurons? Un-
der what conditions are such representations optimal?

We study this problem in two scenarios that are simple enough
to allow the derivation of theoretical results. First, we consider the
encoding performed by a homogeneous set of neurons with identi-
cal tuning curves differing only in their preferred orientation. The
main object of study is the information tuning curve (Kang, Shapley,
& Sompolinsky, 2004) which specifies the ability of the population
to discriminate between any two orientations. When the number
of neurons tends to infinity, closed-form calculations can be
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performed that clarify the constraints imposed by normalization
onto the information tuning curve. In particular, it is shown that
the information tuning curve is determined by the Fourier ampli-
tude spectrum of the tuning curve. Surprisingly, the result can be
used show that the average discrimination performance of the
population (measured as the average (d0)2 across all possible orien-
tation pairs) depends exclusively on the mean of the tuning curve
of neurons and not at all on its shape. This has important conse-
quences for experiments in perceptual learning that attempt to
gauge how neuronal populations change during the learning pro-
cess. Namely, geometric properties of local shape of the tuning
curve (such as its bandwidth at half-height or maximum slope)
are not the best choice when evaluating how a population’s ability
to discriminate between any two orientations. Instead, its Fourier
amplitude spectrum is better suited, as it encodes all the informa-
tion in the information tuning curve.

Second, we study the more complex situation of finite dimen-
sional cases, where neurons are also allowed to have different tun-
ing curves. We ask how can we best represent a circular variable in
an optimal fashion in this case. The main finding is, at first, coun-
terintuitive: normalization causes the optimal encoding to be
attainable using a finite number of neurons. In other words,
increasing the number of neurons in a normalized population does
not always allow for an improved population code.

We then show how these results can be used to estimate the
number of neurons involved in the coding of orientation at any
one position in the visual field from experimental data. We find
that if the cortex were to code orientation optimally, a small num-
ber (�5) of normalized neurons would suffice.

These findings demonstrate that normalization imposes impor-
tant constraints on the coding of information and, giving its inci-
dence in cortical circuits, it should be incorporated as an integral
component in formal models of population coding.

2. Results

2.1. A geometric view of normalization

The normalization model we adopt is one that has been used
widely to model the responses of simple cells in primary visual
cortex (Carandini et al., 1997; Heeger, 1992):

r̂i ¼ ri=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ krk2

q
i ¼ 0;1; . . . ;N � 1 ð1Þ

Here ri represents the initial response of neuron i to a stimulus,
r ¼ ðr0; r1; . . . ; rN�1Þ is a vector describing the response of the N cells
in the population, krk is the Euclidian norm of the vector, r is the
semi-saturation constant, and r̂ ¼ ðr̂0; r̂1; . . . ; r̂N�1Þ is the vector of
normalized responses. Our first observation is simple: for strong
stimuli, for which krk � r; the normalized population response
lies on a hyper-sphere, SN�1. This means that in general the prob-
lem of encoding under normalization becomes one of defining a
map from a given stimulus space to a high-dimensional sphere,
the dimension of which is determined by the number of neurons
at hand. A few examples demonstrate how this fact leads to some
interesting theoretical problems.

Consider first the coding of a circular variable, which we will
discuss in detail below. This a problem confronted by the nervous
system in several contexts, including the coding of the orientation
or direction of motion of a visual stimulus, the color hue of a sur-
face patch, wind direction, reaching direction, and heading direc-
tion with respect to magnetic north. In all these cases, the
domain of the stimulus can be associated to unit circle. Any point
on the circle defines can be associated with the value of the vari-
able under consideration (Fig. 2a). Thus, the problem of encoding
a circular variable by a normalized population of N neurons
amounts to defining a map that takes the unit circle into the a
(N � 1)-sphere,

f : S1 ! SN�1: ð2Þ

Studying the property of these maps, and how one could obtain
some that are optimal in some sense, is the central topic of our
study.

Another interesting situation arises when we consider the joint
coding of the orientation and the spatial phase of a sinusoidal grat-
ing (Fig. 2b). This stimulus space represents a Klein bottle, a fact
that may not be entirely evident at first (Carlsson, Ishkhanov, DaS-
ilva, & Zomordian, 2008; Singh et al., 2008; Swindale, 1996; Tana-
ka, 1995). One way to show this is by plotting the individual
gratings corresponding to the various combinations of the param-
eters (Fig. 2b). One can then see that gratings on the top and bot-
tom rows are identical to each other, as indicated by the
matching directions of the two red arrows. If we wanted to match
these two arrows one on top of the other all we need to do is roll
the rectangle of gratings into a cylinder. On the other hand, the
stimuli on the left and right columns are the same but reversed
in order, as indicated by the directions of the blue arrows. To match
the directions of the blue arrows once we have rolled the space
into a cylinder we would need to puncture the cylinder in 3D
space, but it turns out that it can be done in 4D without puncturing
(Fig. 2b). The resulting object is a Klein bottle. Thus, the problem of
mapping the orientation and spatial phase of a grating onto the
normalized population of cells amounts to defining an embedding
of the Klein bottle into the (N � 1)-sphere.

A final example is the joint coding of orientation and color hue
(Johnson, Hawken, & Shapley, 2008) (Fig. 2c). Here, as one can infer
by the direction of the arrows, the resulting object is a torus, which
is obtained by rolling the space into a cylinder and then gluing the
ends together. Implementing a population code that maps orienta-
tion and color hue to a normalized population of neurons is thus
equivalent to the embedding of a torus in a high-dimensional
sphere.

These examples illustrate that interesting geometrical and
topological problems arise when we consider the representation
of visual information via normalized population of neurons. In
what follows, we take a first step to gain some insight into the con-
straints imposed by normalization we being by considering a very
simple case of orientation tuning (Benyishai, Baror, & Sompolinsky,
1995; Salinas & Abbott, 1994; Seung & Sompolinsky, 1993).

Fig. 1. Normalization of population responses. Front end linear receptive fields are
followed by a half-rectifier (Movshon et al., 1978), and the resulting responses are
normalized by the term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ krk2

q
. (Figure modified from Carandini et al. (1997).)
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