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a b s t r a c t

We propose a formal Bayesian definition of surprise to capture subjective aspects of sensory information.
Surprise measures how data affects an observer, in terms of differences between posterior and prior
beliefs about the world. Only data observations which substantially affect the observer’s beliefs yield sur-
prise, irrespectively of how rare or informative in Shannon’s sense these observations are. We test the
framework by quantifying the extent to which humans may orient attention and gaze towards surprising
events or items while watching television. To this end, we implement a simple computational model
where a low-level, sensory form of surprise is computed by simple simulated early visual neurons. Bayes-
ian surprise is a strong attractor of human attention, with 72% of all gaze shifts directed towards locations
more surprising than the average, a figure rising to 84% when focusing the analysis onto regions simul-
taneously selected by all observers. The proposed theory of surprise is applicable across different spatio-
temporal scales, modalities, and levels of abstraction.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction and background

In a world full of surprises, animals have developed an exquisite
ability to quickly detect and orient towards unexpected events
(Ranganath & Rainer, 2003). Yet, at present, our formal understand-
ing of what makes an observation surprising is limited: Indeed, our
everyday vocabulary lacks a quantitative notion of surprise, with
qualities such as ‘‘wow factors” still ill-defined and thus far intracta-
ble to quantitative analysis. Here, within the Bayesian probabilistic
framework, we develop a simple quantitative theory of surprise.
Armed with this theory, we provide direct experimental evidence
that Bayesian surprise best characterizes what attracts human gaze
in large amounts of natural video stimuli.

Our effort to formally and mathematically define surprise is
motivated by the fact that informal correlates of surprise have been
described at nearly all stages of neural processing. Thus, surprise is
an essential concept for the study of the neural basis of behavior. In
sensory neuroscience, for example, it has been suggested that only
the unexpected at one stage of processing is transmitted to the next
stage (Rao & Ballard, 1999). Hence, sensory cortex may have
evolved to adapt to, to predict, and to quiet down the expected sta-
tistical regularities of the world (Olshausen & Field, 1996; Müller,
Metha, Krauskopf, & Lennie, 1999; Dragoi, Sharma, Miller, & Sur,

2002; David, Vinje, & Gallant, 2004), focusing instead on events that
are unpredictable or surprising (Fairhall, Lewen, Bialek, & de Ruyter
Van Steveninck, 2001). Electrophysiological evidence for this early
sensory emphasis onto surprising stimuli exists from studies of
adaptation in visual (Maffei, Fiorentini, & Bisti, 1973; Movshon &
Lennie, 1979; Müller et al., 1999; Fecteau & Munoz, 2003), olfactory
(Kurahashi & Menini, 1997; Bradley, Bonigk, Yau, & Frings, 2004),
and auditory cortices (Ulanovsky, Las, & Nelken, 2003), subcortical
structures like the LGN (Solomon, Peirce, Dhruv, & Lennie, 2004),
and even retinal ganglion cells (Smirnakis, Berry, Warland, Bialek,
& Meister, 1997; Brown & Masland, 2001) and cochlear hair cells
(Kennedy, Evans, Crawford, & Fettiplace, 2003): neural responses
greatly attenuate with repeated or prolonged exposure to an ini-
tially novel stimulus. At higher levels of abstraction, surprise and
novelty are also central to learning and memory formation (Rang-
anath & Rainer, 2003), to the point that surprise is believed to be
a necessary trigger for associative learning (Schultz & Dickinson,
2000; Fletcher et al., 2001), as supported by mounting evidence
for a role of the hippocampus as a novelty detector (Knight, 1996;
Stern et al., 1996; Li, Cullen, Anwyl, & Rowan, 2003). Finally, seeking
novelty is a well-identified human character trait, possibly associ-
ated with the dopamine D4 receptor gene (Ebstein et al., 1996;
Benjamin et al., 1996; Lusher, Chandler, & Ball, 2001).

Empirical and often ad-hoc formalizations of surprise, usually
referred to as spatial ‘‘saliency” or temporal ‘‘novelty,” are at the
core of many laboratory studies of attention and visual search:
The strongest attractors of attention are stimuli that pop-out from
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their neighbors in space or time, like a salient vertical bar embed-
ded within an array of horizontal bars (Treisman & Gelade, 1980;
Wolfe & Horowitz, 2004), or the abrupt onset of a novel bright
dot in an otherwise empty display (Theeuwes, 1995). Computa-
tionally, these notions may be summarized in terms of outliers
(Markou & Singh, 2003) and Shannon information: stimuli which
have low likelihood given a distribution of expected or learned
stimuli, over space or over time, are outliers, are more informative
in Shannon’s sense, and capture attention (Duncan & Humphreys,
1989). We show that this line of thinking at best captures an
approximation to surprise, but can be flawed in some extreme
cases. To exacerbate the differences and to gauge their practical
impact in ecologically relevant situations, we quantitatively com-
pare Bayesian surprise to 10 existing measures of saliency and nov-
elty, in their ability to predict human gaze recordings on large
amounts of natural video data. We find that Bayesian surprise best
characterizes where people look, even more so for stimuli that are
consistently fixated by multiple observers. Our results suggest that
surprise is an important formalization for understanding neural
processing and behavior, and is the best known attractor of human
attention.

This work extends Itti and Baldi (2006), through a more com-
plete exposition of the theory and of the new proposed unit of sur-
prise (the ‘‘wow”), simple examples of how surprise may be
computed, and a broader set of experiments and comparisons with
competing theories and models.

2. Theory

In this paper, we elaborate a definition of surprise that is gen-
eral, information-theoretic, derived from first principles, and for-
malized analytically across spatio-temporal scales, sensory
modalities, and, more generally, data types and data sources.
Two elements are essential for a principled definition of surprise.
First, surprise can exist only in the presence of uncertainty. Uncer-
tainty can arise from intrinsic stochasticity, missing information, or
limited computing resources. A world that is purely deterministic
and predictable in real-time for a given observer contains no sur-
prises. Second, surprise can only be defined in a relative, subjective,
manner and is related to the expectations of the observer, be it a
single synapse, neuronal circuit, organism, or computer device.
The same data may carry different amounts of surprise for different
observers, or even for the same observer taken at different times.

2.1. Defining surprise

In probability and decision theory it can be shown that, under a
small set of axioms, the only consistent way for modeling and rea-
soning about uncertainty is provided by the Bayesian theory of prob-
ability (Cox, 1964; Savage, 1972; Jaynes, 2003). Furthermore, in the
Bayesian framework, probabilities correspond to subjective degrees
of beliefs in hypotheses (or so-called models). These beliefs are up-
dated, as data is acquired, using Bayes’ theorem as the fundamental
tool for transforming prior belief distributions into posterior belief
distributions. Therefore, within the same optimal framework, a con-
sistent definition of surprise must involve: (1) probabilistic concepts
to cope with uncertainty and (2) prior and posterior distributions to
capture subjective expectations. These two simple components are
at the basis of the proposed definition of surprise below.

The background information of an observer is captured by his/
her/its prior probability distribution fPðMÞgM2M over the hypothe-
ses or models M in a model space M. At a high level of abstraction
and for, e.g., a human observer, the ensemble M may for instance
consist of a number of cognitive hypotheses or models of the
world, such as:

M ¼ fit will rain tomorrow; ð1Þ
the cold war is over;
the USC-Trojans football team is on a winning streak;
my wallet is in my possession;
my car is in good working order;
my credit card information is secure;
nobody at work knows that today is my birthday;
etcg

At lower levels of abstraction and for less sophisticated observers,
the model space may be much simpler, corresponding to straight-
forward hypotheses over well-defined quantities, such as, for exam-
ple, the amount of light hitting a given photoreceptor:

M ¼ flight level is low; ð2Þ
light level is medium;
light level is high;
etcg

With each of these hypotheses or models M is associated a likeli-
hood function, PðDjMÞ, which quantifies how likely any data obser-
vation D is under the assumption that a particular model M is
correct.

Given the prior distribution of beliefs before the next observa-
tion of data, the fundamental effect of a new data observation D
on the observer is to change the prior distribution fPðMÞgM2M into
the posterior distribution fPðMjDÞgM2M via Bayes’ theorem,
whereby

8M 2M; PðMjDÞ ¼ PðDjMÞ
PðDÞ PðMÞ: ð3Þ

In this framework, the new data observation D carries no sur-
prise if it leaves the observer’s beliefs unaffected, that is, if the pos-
terior distribution over the ensemble M is identical to the prior.
Conversely, D is surprising if the posterior distribution after
observing D significantly differs from the prior distribution. There-
fore we formally measure surprise by quantifying the distance (or
dissimilarity) between the posterior and prior distributions. Com-
puting such distance between two probability distributions is best
done using the relative entropy or Kullback-Leibler ðKLÞ divergence
(Kullback, 1959). Thus, surprise is defined by the average of the
log-odd ratio:

SðD;MÞ ¼ KLðPðMjDÞ; PðMÞÞ ¼
Z
M

PðMjDÞ log
PðMjDÞ
PðMÞ dM ð4Þ

taken with respect to the posterior distribution over the model
space M. For example, using the premises of Eq. (1), if the data
observation D consisted of patting your pocket and realizing that
it feels unusually empty, that would create surprise as your poster-
ior beliefs in the hypotheses ‘‘my wallet is in my possession” and
‘‘my credit card information is secure” would be dramatically lower
than the prior beliefs in these hypotheses, resulting in a large KL dis-
tance between posterior and prior over all hypotheses, and in large
surprise.

Note that KL is not symmetric but has well-known theoretical
advantages, including invariance with respect to reparameteriza-
tions. A unit of surprise – a ‘‘wow” – may then be defined for a sin-
gle model M as the amount of surprise corresponding to a two-fold
variation between PðMjDÞ and PðMÞ, i.e., as log PðMjDÞ=PðMÞ (with
log taken in base 2). The total number of wows experienced when
simultaneously considering all models is obtained through the
integration in Eq. (4). In the following section, we provide a simple
description of how surprise may be computed, and of how it fun-
damentally differs from Shannon’s notion of information (notably,
Shannon’s entropy requires integration over the space D of all pos-
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