Contents lists available at ScienceDirect

Chemical Engineering Research and Design

journal homepage: www.elsevier.com/locate/cherd

Optimizing the fluidized-bed reactor for synthesis gas production by tri-reforming

S. Khajeh^a, Z. Arab Aboosadi^{b,*}, B. Honarvar^c

^a Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

^b Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

^c Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

ABSTRACT

Methane tri-*reforming* is considered as a highly efficient process for syngas production. In this paper, a fluidized-bed tri-reformer reactor (TR), which is a suitable alternative for conventional steam reformer (CSR) and auto thermal reformer (CAR), is optimized. A mathematical heterogeneous model is applied to simulate the reactor and the model is validated using the plant data. After determining the optimal operating conditions through differential evolution (DE) method, the performance of the proposed reactor is assessed through evaluating the methane conversion, hydrogen production and desired H₂/CO ratio. Methane conversion, hydrogen yield and H₂/CO ratio are 99.4%, 2.1 and 1.84, respectively.

© 2014 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Keywords: Fluidized-bed; Tri-reformer; Optimization; Differential evolution; syngas production

1. Introduction

Methanol is considered as a key chemical which could be obtained from a wide variety of resources, mainly from synthesis gas (CO and H₂) (Choudhary and Mamman, 2000; Choudhary and Mondal, 2006; Feng et al., 2009; Ahmed and Gupta, 2009, 2011). The predominant production method of syngas includes steam reforming of natural gas. In this method, obtaining the desired H₂/CO ratio with high methane conversion and limiting coke deposition are among the most important operational issues. It is worth mentioning that the suitable H₂/CO ratio highly varies according to the intended use for the syngas that is 1.5–2 for the methanol production (Jiang et al., 2007).

In the conversion of natural gas to syngas, following basic catalytic reactions present:

• Steam reforming of methane (SRM):

$$CH_4 + H_2O \leftrightarrow CO + 3H_2 \quad \Delta H_{298}^{\circ} = 206.3 \text{ kJ mol}^{-1}$$
(1)

• Carbon dioxide reforming of methane (CDR) or dry reforming of methane:

 $CH_4 + CO_2 \leftrightarrow 2CO + 2H_2 \quad \Delta H_{298}^{\circ} = 247.3 \text{ kJ mol}^{-1}$ (2)

• Partial oxidation of methane (POM):

$$CH_4 + \frac{1}{2}O_2 \leftrightarrow CO + 2H_2 \quad \Delta H_{298}^{\circ} = -35.6 \text{ kJ mol}^{-1}$$
 (3)

In the previous decade, Song (2001) suggested tri-reforming of methane (TRM) as a novel syngas production procedure. This process refers to simultaneous reforming of oxidative CO_2 -steam from natural gas, which involves synergetic combination of CO_2 reforming, steam reforming, and methane oxidations. In order to improve the performance of this process, O_2 and H_2O are used to decrease coke formation on the catalysts and the H_2/CO ratio is maintained around 2 for better syngas production. Considering the fact that reforming reactions are endothermic and oxidation reaction is exothermic, combination of these reactions contributes to energy saving because the produced heat in the partial oxidation of methane is consumed in the reforming reactions. From environmental

* Corresponding author. Tel.: +98 728 3311150.
 E-mail addresses: zarababoosadi@yahoo.com, aboosadi@miau.ac.ir (Z. Arab Aboosadi).

Available online 1 September 2014

http://dx.doi.org/10.1016/j.cherd.2014.08.018

^{0263-8762/© 2014} The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

 $\Delta H_{f,i}$

romenciacare

Symbol	
А	cross section area of reactor [m ²]
Ar	Archimedes number [–]

- ArArchimedes number [-] a_b specific surface area of bubble $[m^{-1}]$
- a_b specific surface area of bubble $[m^{-1}]$ C_p specific heat of the gas at constant pressure
- $\begin{bmatrix} J \, mol^{-1} \, K^{-1} \end{bmatrix} \\ C_t \qquad \mbox{total concentration } [mol \, m^{-3}] \label{eq:constraint}$
- D_i inner diameter [m]
- d_p particle diameter [m]
- d_b bubble diameter [m]
- F_t total molar flow [mol s⁻¹]
- F^b molar flow in bubble side [mol s⁻¹]
- F^e molar flow in emulsion side [mol s⁻¹]
- k_1 reaction rate constant for the first rate equation [mol kg⁻¹ s⁻¹]
- k_2 reaction rate constant for the second rate equation [mol kg⁻¹ s⁻¹]
- $\begin{array}{ll} k_3 & \quad \mbox{reaction rate constant for the third rate equation } [mol\,kg^{-1}\,s^{-1}] \end{array}$
- k_{4a} first reaction rate constant for the fourth rate equation [molkg⁻¹s⁻¹]
- k_{4b} second reaction rate constant for the fourth rate equation [mol kg⁻¹ s⁻¹]
- K_{bei} mass transfer coefficient for component i in fluidized-bed [m s⁻¹]
- L reactor length [m]
- P_i partial pressure of component i in reaction side [bar]
- r_i reaction rate of component i [mol kg⁻¹ s⁻¹]
- r_{bi} reaction rate of component i in bubble phase [molkg⁻¹s⁻¹]
- r_{ei} reaction rate of component i in emulsion phase [mol kg⁻¹ s⁻¹]
- R_1 first rate of reaction for steam reforming of CH₄ [mol kg⁻¹ s⁻¹]
- $\begin{array}{ll} R_2 & \mbox{ second rate of reaction for steam reforming of } \\ & CH_4 \; [mol\,kg^{-1}\,s^{-1}] \end{array}$
- R_3 water-gas shift reaction [mol kg⁻¹ s⁻¹]
- R_4 rate for total combustion of CH_4 [mol kg⁻¹ s⁻¹]
- R universal gas constant [J mol⁻¹ K⁻¹]
- T bulk gas phase temperature [K]
- T_w wall temperature of steam reformer [K]
- u superficial velocity of fluid phase [m s⁻¹]
- u_b velocity of rise of bubbles [m s⁻¹]
- U_w overall heat transfer coefficient between tube wall and reaction side streams in steam reformer [W m⁻² K⁻¹]
- y_{ib} mole fraction of component i in the bubble phase [–]
- y_{ie} mole fraction of component i in the emulsion phase [–]
- z axial reactor coordinate [m]

Greek letters

- α activity of catalyst (where $\alpha = 1$ for fresh catalyst) [–]
- $ho_{
 m B}$ density of catalytic bed [kg m⁻³]
- ρ_e density of emulsion phase [kg m⁻³]
- ρ_g density of fluid phase [kg m⁻³]
- ho_p density of catalyst [kg m⁻³]

ΔH_{298}	enthalpy of reaction at 298 K [J mol $^{-1}$]
δ	bubble phase volume as a fraction of total bed
	volume [–]
€ _{mf}	void fraction of catalytic bed at minimum flu-
5	idization [–]
η	catalyst effectiveness factor [–]
μ	viscosity of fluid phase $[\mathrm{kg}\mathrm{m}^{-1}\mathrm{s}^{-1}]$
γ	volume fraction of catalyst occupied by solid
	particle in bubble [–]
ϕ_{s}	sphericity of catalyst [–]
Subscrip	ot
0	entrance of reactor
i	component i
j	reaction number index
р	particle
g	gas phase
b	bubble phase
е	emulsion phase

enthalpy of formation of component i [J mol⁻¹]

mf minimum fluidization

point of view, in this process, CO_2 (which exists in effluent gases) is consumed as a co-reactant and is turned into syngas that is largely used in methanol, dimethyl ether and other valuable components.

After the introduction of methane tri-reforming (TRM) in laboratory scale by Song (2001) in 2001, researchers have investigated this process extensively (Song et al., 2002; Hong-tao et al., 2007; Lee et al., 2003a,b; Tomishige, 2004). In recent years, tri-reforming process has been applied to di-methylether (DME) production in a pilot plant and demonstration unit in Korea (Cho et al., 2009).

Arab Aboosadi et al. (2011) used differential evolution (DE) procedure to optimize tri-reformer reactor and studied the influence of various parameters including steam/CH4 on gas temperature, inlet temperature, O2/CH4, CO2/CH4, methane conversion, H_2/CO ratio and hydrogen production. The results showed that the conversion of methane enhanced by 3.8% compared to industrial reformers in a single reactor. García-Vargas et al. (2013) studied the effect of the feedstock composition on methane conversion, the H₂/CO molar ratio of the synthesis gas obtained by tri-reforming of methane and the heat released or supplied to the system with a Ni/ β -SiC catalyst. Lo Faro et al. (2013) optimized the coupling of a biogas-fed solid oxide fuel cell (SOFC) with an external trireforming system over ceria supported Ni catalyst (1.75-wt.% Ni/CeO₂). They showed that this process is a promising process for small and medium sized stationary power systems. Rahimpour et al. (2012) investigated syngas production in fixed-bed tri-reformer reactor. They used a hydrogen and oxygen selective membrane for methanol production.

Non-convex, non-linear, and constrained optimization problems are considered as the most frequent industrial optimization problems. An optimum design, which includes the most suitable condition, mostly contributes to the lowest cost per unit of time or the highest profit per unit of production. Recently, quite a few number of search algorithms techniques have been suggested in the fields of evolutionary programming (EP) (Viecco and Caram, 2002), evolution strategies (ES) (Rechenberg, 1973), genetic algorithms (GA) (Holland, 1975) Download English Version:

https://daneshyari.com/en/article/620455

Download Persian Version:

https://daneshyari.com/article/620455

Daneshyari.com