
chemical engineering research and design 9 4 ( 2 0 1 5 ) 18–31

Contents lists available at ScienceDirect

Chemical  Engineering  Research  and  Design

journa l h om epage: www.elsev ier .com/ locate /cherd

Mathematical  programming  approaches  for
downstream processing  optimisation  of
biopharmaceuticals

Songsong Liua, Ana S. Simariab, Suzanne S. Faridb,
Lazaros  G. Papageorgioua,∗

a Centre for Process Systems Engineering, Department of Chemical Engineering, University College London,
Torrington Place, London WC1E 7JE, UK
b The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College
London, Torrington Place, London WC1E 7JE, UK

a  r  t  i  c  l  e  i  n  f  o

Article history:

Received 15 August 2014

Received in revised form 12

November 2014

Accepted 2 December 2014

Available online 8 December 2014

Keywords:

Downstream processing

mAb

Chromatography

MILFP

Hierarchical approach

a  b  s  t  r  a  c  t

This work addresses the optimal downstream chromatography sequencing and column siz-

ing  strategies in the manufacturing processes of monoclonal antibodies (mAbs). A mixed

integer linear fractional programming (MILFP) model is developed to achieve continuous bed

height values. In addition, to ease the computational expense of the literature MILFP model

for  discrete bed height values, two efficient hierarchical solution approaches are developed

involving the two MILFP models, in which, based on its optimal solution of the newly  devel-

oped MILFP model, the reduced MILFP model is solved with smaller decision region to find

the  final solution. A Dinkelbach-based algorithm is used as the solution approach of the

MILFP models. Finally, a case study with different upstream processing (USP) and down-

stream processing (DSP) ratios are investigated, and the results show that all proposed

approaches have high computational efficiency to satisfy different needs of the decision

makers.
©  2015 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1.  Introduction

Monoclonal antibody (mAb) therapeutics represent one of the fastest

growing sectors in the biopharmaceutical industry, whose global sales

in 2011 were estimated at 44.6 billion USD and predicted to increase

to 58 billion USD by 2016 (Butler, 2013). With the increasing mAbs

demand and market competition, significant attention is being focused

on reducing manufacturing costs and improving process efficiency for

industrial-scale production (Mehta et al., 2008). In a typical manufac-

turing process of the mAb, mammalian cells expressing the mAb are

cultured in the upstream processing (USP), and the mAb is recovered,

purified and cleared from viruses by a variety of operations, includ-

ing a number of chromatography steps, in the downstream processing

(DSP). The chromatography purification steps are critical to the whole

manufacturing process in terms of the cost and productivity. The chro-

matography steps are key steps to separate the protein of interest from
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the mixture, and have significant impact on the purity of the final prod-

uct. Because of the expensive chromatography resins and the large

amount of buffer used, they usually comprise of a large portion of the

total manufacturing cost, and the cost-effectiveness of a mAb man-

ufacturing process depends on the decisions on the chromatography

strategies. Nowadays, with the increased titre in the USP, the chro-

matography steps need to tackle with the increased protein loaded

in a time- and cost-efficient way, which becomes a bottleneck in the

DSP.

Computer-aided decision tools have been used to assist decision

making in the mAb manufacturing process, especially in the DSP (Lim

et al., 2005, 2006; Stonier et al., 2012, 2013; Pollock et al., 2013a,b).

In addition, a number of optimisation-based approaches have been

developed in the literature work recently. Evolutionary algorithms (EAs)

have received much attention on this topic. For example, Simaria et al.

(2012) developed a meta-heuristic optimisation approach using EAs,
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focusing on the optimal purification sequences and chromatography

column sizing strategies. Allmendinger et al. (2012, 2014) addressed

an industrially relevant problem concerned with the discovery of cost-

effective equipment sizing strategies for purification processes, which

was modelled as a combinatorial closed-loop optimisation problem and

solved by EA. Meanwhile, mathematical programming models have

been developed in the literature. Liu et al. (2013a) addressed the chro-

matography column sizing decisions, including column diameter, bed

height, number of columns and number of cycles, in the mAb manu-

facturing, and developed a mixed integer linear programming (MILP)

model with an objective to minimise cost of goods per gram (COG/g).

Later, in Liu et al. (2013b), a mixed integer nonlinear programming

(MINLP) model was proposed for the facility design with the current

titre. Then, the titres were increased, and parts of the column siz-

ing decisions were re-optimised to fit the equipment from the facility

design. In the recent work of Liu et al. (2014), the integrated chromatog-

raphy sequencing and column sizing strategies of the mAb purification

process were addressed. Besides the column sizing decisions, the chro-

matography sequence, i.e. the resin used at each chromatography step,

is determined as well. To solve this problem, an MINLP model was

developed, which was reformulated as a mixed integer linear fractional

programming (MILFP) model using exact linearisation techniques. An

algorithm based on the classic Dinkelbach’s algorithm (Dinkelbach,

1967) was used to solve the MILFP model, which was proved to be much

more efficient than solving the MINLP model. Although the CPU time

is significantly reduced through the case study investigated in Liu et al.

(2014), the problem size investigated there is quite small, with only 6

resins as candidates. However, in the real world problem, the number

of the candidate resins can be much larger. In this case, the computa-

tional performance and ability of the proposed MILFP model should be

further investigated.

The above work treated the bed heights as discrete integer values,

which could also take continuous/decimal values in real practice. Thus,

the aim of this work is to extend the work of Liu et al. (2014), and develop

a new MILFP model which takes continuous values of the bed heights.

Also, based on the new MILFP model, we develop efficient solution

approaches to find discrete bed heights to overcome the computational

difficulty of literature MILFP model for large instances.

The rest of this paper is organised as follows: In Section 2, by inves-

tigating an industrially relevant motivation example, the limitation of

the literature MILFP model and the motivation of this work are shown.

Then, the problem statement is presented in Section 3. The mathemat-

ical formulation of a new optimisation model is presented in Section

4, followed by two hierarchical solution approaches proposed in Sec-

tion 5. The computational results of the proposed approaches on the

industrially relevant example are presented and discussed in Section

6. Finally, the concluding remarks are made.

2.  A  motivation  example

In this section, we  investigate an industrially relevant
motivation example of mAb  manufacture with a typical man-
ufacturing process (as shown in Fig. 1). There are 20 candidate
commercial resins to be selected for purification at the chro-
matography steps (purple in Fig. 1). These resins are from 4

types, including affinity (AFF), cation-exchange (CEX), anion-
exchange (AEX), and mixed-mode chromatography (MM),
and present trade-offs in key operating characteristics (e.g.
dynamic binding capacity and linear velocity). The key charac-
teristics of the resin candidates that impact the performance
metric of the downstream process are shown in Table 1. Each
resin’s lifetime is 100 cycles. Similar to the example discussed
in Liu et al. (2014), we have 11 discrete potential bed heights
(ranging from 15 cm to 25 cm)  and 10 discrete potential column
diameters (ranging from 50 cm to 200 cm). Meanwhile, at most
10 cycles per batch are allowed, while up to 4 parallel columns
are permitted at each chromatography step. All other param-
eters of the example are the same as the example discussed
in Liu et al. (2014).

In the work of Liu et al. (2014), an MILFP model was
developed for the optimisation of the downstream chromatog-
raphy sequencing and column sizing strategies, to minimise
COG/g, which is equal to the annual total cost (AC) divided
by the annual total production (AP). The binary variables
are introduced for the selection from the discrete column
volumes, determined by discrete column bed heights and
diameters, in the developed MILFP model, which is denoted as
MILFP DBH model in this paper. In the literature work, there
are a few solution approaches for mixed integer fractional pro-
gramming models, e.g. Dinkelbach’s algorithm (Bradley and
Arntzen, 1999; You et al., 2009; Zhong and You, 2014) and
reformulation-linearisation method (Yue et al., 2013). An algo-
rithm based on Dinkelbach’s algorithm was adapted by Liu
et al. (2014), in which the MILFP model is solved by solving a
sequence of MILP models iteratively, as presented in Fig. 2. In
this Dinkelbach-based algorithm, each MILP model is solved
with an optimality gap <100%, then the global optimum of the
MILFP model is guaranteed.

In order to find the optimal chromatography sequencing
and column sizing strategies of the mAb  manufacturing, we
apply the above Dinkelbach-based algorithm to the industri-
ally relevant example, where three scenarios with different
USP and DSP train ratios, i.e. 1USP:1DSP, 2USP:1DSP and
4USP:1DSP, are considered. The corresponding bioreactor
volume of each scenario is 25,000 L, 12,500 L, and 6250 L,
respectively. Here, more  USP units will lead to smaller batch
size and has tighter DSP windows, while fewer USP units will
result in fewer number of batches. The models and approaches
are implemented in GAMS 24.0 (Brooke et al., 2012) on a 64-bit
Windows 7 based machine with 3.20 GHz six-core Intel Xeon
processor W3670 and 12.0 GB RAM, using CPLEX MILP solver
with four threads. Based on the discussion in Liu et al. (2014),
the optimality gap for a single MILP model in the algorithm
does not affect the optimality of the algorithm, as long as it is
less than 100%. Since the Dinkelbach-based algorithm is quite
robust with respect to the optimality gap, we set it to 10% in
this work. The CPU time limit for a single MILP model is 10 h.

Fig. 1 – A typical mAb  manufacturing process.
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