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a  b  s  t  r  a  c  t

A mid-course correction (MCC) strategy based self-tuning final product quality control of

batch processes is presented. The method employs KPLS model developed using batch-wise

unfolding data set to capture the relationship between the process variables and final qual-

ity.  The estimators for the future unknown trajectories are accomplished using statistical

latent variable missing data imputation method based on multi-PCA models. Then the opti-

mal  control problem is formulated such that the solution is constrained to lie in the kernel

latent variable space of the model defined by historical batch data set, and heuristic rule

is  used for weighting factor to balance the control objective and score magnitude. Finally,

SQP  is implemented to solve the constraint optimization problem. Application to a simu-

lated cobalt oxalate synthesis process demonstrates that the proposed modeling and quality

control strategy can improve process performance.

© 2015 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1.  Introduction

Batch/semi-batch processes are commonly used for manufacturing of

many high-value-added products such as pharmaceuticals, specialty

chemicals, foods and metals. They possess a number of features that

lead to interesting control problems, some of which are: the control

objective is to obtain a desired product by the end of the batch; the

product quality is only available by offline assay after the finish of the

batch. In batch/semi-batch processes, it is usually necessary to achieve

tight final quality specifications (Flores-Cerrillo and MacGregor, 2003;

Albazzaz and Wang, 2004). However, such quality control problems are

not easily solved due to the nonlinear behavior of the chemical reactors,

and constant changes in raw material properties (Wang and Srinivasan,

2009; Yacoub and MacGregor, 2004).

Theoretical approaches to the control of batch product quality are

often based on the use of first principle models (Kozub and MacGregor,

1992; Kravaris and Soroush, 1990). The difficulty in practice is the need

for physical insight into the batch processes and a large amount of
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computational effort that may not be suitable for agile responsive

manufacturing. Numerous simpler approaches have been proposed to

reduce the variation in product quality based on the idea of mid-course

correction (MCC) and empirical models such as partial least squares

(PLS) models (Wan et al., 2012; Wang and Srinivasan, 2009; Kano and

Nakagawa, 2008; MacGregor et al., 2005; Flores-Cerrillo and MacGregor,

2003; Kesavan et al., 2000; Russell et al., 1998). In these approaches,

simple and easily available online measurements with some offline

measurements at some mid-course points (decision points) are used

to predict the final product quality. If the final quality predicted by

empirical models fall out of a statistically defined acceptable region, the

mid-course correction should be employed to get the product quality

back to this desired region. The central assumption of these approaches

is that process conditions during the batch will tend to dominate sys-

tematic batch-to-batch variation (Wang and Srinivasan, 2009), thus

the riddle for the absence of future data is usually solved by utiliz-

ing data imputation methods (Arteaga and Ferrer, 2002; Nelson et al.,

1996).
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However, in some industrial applications, nonlinear models are

more appropriate than linear ones to capture the behavior of the batch

processes (Zhang, 2009). In order to deal with the nonlinear issue of the

batch quality control, an artificial neural network (ANN) was employed

to generate model of batch process relating product quality to pro-

cess input variables and processing conditions (Joseph and Hanratty,

1993). Yacoub and MacGregor (2004) used nonlinear PLS model and

sequential quadratic programming (SQP) to solve several important

product development and batch process control objectives. Zhang et al.

(2011) used stacked least squares support vector regression (LS-SVM)

model to perform the first order Taylor series expansion that linearizes

the nonlinear kernel based model and then obtained the solution by

solving quadratic programming (QP) problem. Nonetheless, for MCC

approaches based on nonlinear data-driven models, the success of the

quality control approach depends on the single global model (Golshan

et al., 2010), thus a nonlinear modeling method with high prediction

accuracy and generalization capability ought to be utilized. And since

the nonlinear data-driven model only provides causal information in

the region where the model is valid, constraints are necessary to con-

strain the optimization solution in this region.

Recently, kernel based algorithms are often used to improve the

product quality of nonlinear batch process (Zhang and Qin, 2007, 2008;

Yan et al., 2004). The proper method to kernel based algorithms for

batch process involves the use of kernel partial least squares (KPLS).

KPLS can efficiently compute latent variables in the feature space by

means of nonlinear kernel functions (Jia et al., 2010; Kim et al., 2005).

Compared to other nonlinear modeling methods, the main advantage

of the kernel based algorithm is that it does not involve nonlinear opti-

mization, which makes it as simple as the conventional linear PLS. In

addition, because of its ability to use different kernel functions, KPLS

can handle a wide range of nonlinearities (Rosipal, 2003; Rosipal and

Trejo, 2001). This paper considers an alternative MCC based approach

for nonlinear problem of the batch product quality control. In this

approach, a KPLS model based on historical batch data is built to cap-

ture the relationship between the process variables and final product

quality. As in most MCC methods, one or more decision points are

specified firstly, and then the prediction of final quality based on KPLS

model is used to determinate whether or not to take control action at

each decision point. If the prediction of the final quality falls out of an

acceptable region, the control action is calculated by utilizing optimiza-

tion technique. The three formulations proposed in this paper are: (i)

the unknown future trajectories are estimated using multi-PCA models;

(ii) the soft constraint on the score magnitude is used to constrain the

solution in the kernel latent variable space of KPLS model; (iii) heuristic

rule is used for weighting factor to balance the control objective and

score magnitude.

The remainder of this paper is organized as follows. A brief review of

the theory of PLS and KPLS is described in Section 2. Section 3 presents

the MCC strategy for quality control based on KPLS model. Application

of the proposed MCC strategy to a simulated cobalt oxalate synthesis

process and some discussions are given in Section 4. Finally, Section 5

draws some concluding remarks.

2.  Preliminary  materials

2.1.  Partial  least  squares  (PLS)

The PLS model aims to describe the linear relationship
between input and output variable sets. The observations for
each set of variables are stored in matrices, that is the input
matrix X ∈ R

I×N and the output matrix Y ∈ R
I×M, and possess

the model structure

Y = XB + V (1)

where B ∈ R
N×M is the regression coefficient matrix and V ∈

R
I×M is the residual matrix.

In its basic form, nonlinear iterative partial least squares
(NIPALS) algorithm (Wold et al., 2001; Geladi and Kowalski,
1986) is used to sequentially extract the latent variables t ∈
R

I, u ∈ R
I and the weight vectors w ∈ R

N, c ∈ R
M from the X

and Y matrices in decreasing order of their corresponding sin-
gular values. As a result, PLS algorithm decomposes X and Y
matrices with mean zero into the form

X = TPT + E (2)

Y = UQT + F (3)

where T ∈ R
I×A and U ∈ R

I×A are matrices of the A latent vari-
ables, P ∈ R

N×A and Q ∈ R
M×A are matrices of loading vectors,

E ∈ R
I×N and F ∈ R

I×M represent matrices of residuals.
When A latent variables are obtained, using the following

equalities (Rosipal and Trejo, 2001)

W = XTU (4)

P = XTT(TTT)
−1

(5)

C = YTT(TTT)
−1

(6)

and the orthogonality of the matrix T columns, we  can write
the final regression coefficient matrix B in the following form

B = XTU(TTX XTU)
−1

TTY (7)

which will be used to make predictions in PLS regression.

2.2.  Kernel  partial  least  squares  (KPLS)

Since PLS regression is essentially a linear regression method,
it can only perform on batch historical data that vary linearly.
When the variations are nonlinear, the data can be mapped
into a higher dimension space in which they vary linearly.
According to Cover’s theorem (Shawe-Taylor and Cristianini,
2004), the nonlinear data structure in the input space is more
likely to be linear after high-dimensional nonlinear mapping.
This higher dimensional linear space is referred to as the fea-
ture space I. KPLS is formulated in this feature space to extend
linear PLS to its nonlinear kernel form.

Consider a nonlinear transformation of the input variables
xi ∈ R

N(i = 1, 2, . . .,  I) into the feature space I

xi ∈ R
N → �(xi) ∈ I (8)

where �(xi) is a nonlinear mapping function that projects the
input vectors from the input space to the feature space I. Note
that the dimensionality of the feature space is arbitrarily large
and can even be infinite. Denote � as the I × S matrix whose
ith row is the vector �(xi) in an S-dimensional feature space I.
A KPLS algorithm can be derived from a sequence of NIPALS
steps (Rosipal, 2003). Through the introduction of the kernel
trick (Cristianini and Shawe-Taylor, 2000), one can avoid per-
forming explicit nonlinear mapping. Note that � �T represents
the I × I kernel Gram matrix K of the cross dot products between
all mapped input data points �(xi).

The deflations of the K and Y matrices using a new latent
variable t are

K ← (I − t tT)K(I − t tT) (9)
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