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a  b s  t  r  a  c  t

There are two problems, which should be paid attention to when using kernel partial least squares (KPLS), one is

overfitting and another is how to eliminate the useless information mixed in the independent variables X. In this

paper, the stochastic gradient boosting (SGB) method is adopted to solve the overfitting problems and a new method

called kernel net analyte preprocessing (KNAP) is proposed to remove undesirable systematic variation in X that

is  unrelated to Y. Thus, by combining the two methods, a final modeling approach named modified KPLS (MKPLS)

is  proposed. Two simulation experiments are carried out to evaluate the performance of the MKPLS method. The

simulation  results show that MKPLS method can not only be resistant to overfitting but also improve the prediction

accuracy.
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1.  Introduction

Partial least squares (PLS) regression, which was proposed by
Wold in 1983, is one of the most commonly used calibration
methods in chemometrics (Wold et al., 1983). PLS regression
searches for a set of components (called latent variables) that
performs a simultaneous decomposition of independent vari-
ables (X) and dependent variables (Y) with the constraint that
these components explain as much as possible of the covari-
ance between X and Y (Abdi, 2010). PLS is a powerful technique
for process modeling and calibration in systems where the
predictor variables are collinear, measurement data contain
noise, variables have high dimensionality, and where there
are fewer observations than predictor variables (Zhang et al.,
2010a). But PLS regression is a linear method and is inappro-
priate for describing the underlying data structure because
such systems may exhibit significant nonlinear characteris-
tics (Zhang and Zhang, 2009). To solve this issue, a nonlinear
PLS method, called kernel partial least squares (KPLS), was
proposed by Rosipal and Trejo (Rosipal and Trejo, 2002). The
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original datasets are nonlinearly transformed into a feature
space of arbitrary dimensionality via nonlinear mapping, and
then a linear model is created in the feature space (Zhang et al.,
2012; Zhang and Hu, 2011). Because it’s easy to understand and
operate, KPLS has been widely used in many  fields, such as pat-
tern recognition (Qu et al., 2010), signal processing (Helander
et al., 2012), fault diagnosis (Zhang et al., 2010b), and so on.

Data preprocessing methods can reduce the noise effect
on the data, extract more  useful information for model build-
ing, and improve the prediction ability and model robustness.
Many data preprocessing methods have been proposed in
recent years, such as multiplicative scatter correction (MSC)
(Thennadil et al., 2006), standard normal variate (SNV) (Barnes
et al., 1989), Savitzky–Golay smoothing and differentiation
(Savitzky and Golay, 1964), and so on. Recent work has focused
on one method called net analyte preprocessing (NAP), which
was firstly proposed by Lorber (Lorber, 1986). Lorber proved
that the useless information in X, which is not related to
the dependent variables Y for model building, can be com-
pletely removed by NAP and the prediction accuracy can also
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be improved. However, this method can be effectively per-
formed only on a set of observations that vary linearly. When
the variations are nonlinear data, the linear NAP is inappro-
priate for fitting the nonlinear data. This situation will affect
the performance of NAP about removing systematic variation
from an input set X not correlated to the response set Y (Zhang
et al., 2010a). For this reason, inspired by the kernel function
methods, we  propose a new method called kernel net analyte
preprocessing (KNAP) in this paper, which solves the issue of
data nonlinearity compared to NAP.

Another problem, which has to face with when using PLS
or KPLS, is how to avoid overfitting. Overfitting is a commonly
observed situation where the learner performs well on train-
ing data, but has a large error on the test data (Hawkins,
2004). In (Zhang et al., 2004), Massart proposed a weighted
averaged PLS (APLS) method, which has compared predica-
tion ability and is also relatively robust to overfitting. Recently,
a new method called boosting has drawn much attention.
In (Schapire, 1990), based on the so-called margin theory,
Schapire proved that boosting was more  robust to overfitting.
Combining the boosting method with PLS, Massart proposed
a new method called boosting partial least squares (BPLS) to
solve the overfitting problem (Zhang et al., 2005). BPLS has
been used in many  fields, such as quantitative structure-
activity/property relationship (QSAR/QSPR) study (Zhou et al.,
2007), near infrared spectroscopy (Tan et al., 2010), mass spec-
trometry analysis (He et al., 2004), and so on. Although so many
applications of boosting method in PLS regression modeling,
there are little attention paid to the KPLS regression modeling.
Since many  applications have demonstrated the superiority
of KPLS over PLS in solving nonlinear problems (Zhang and
Hu, 2011; Qu et al., 2010; Helander et al., 2012; Zhang et al.,
2010b), it is necessary to study the performance of boosting in
the KPLS modeling. In (Friedman, 2002), a variant of boosting
method called stochastic gradient boosting (SGB) was pro-
posed, and this method has less computation time and higher
prediction accuracy than the boosting method. Combing the
SGB with KPLS, we  proposed a new method called stochas-
tic gradient boosting-kernel partial least squares (SGB-KPLS)
in this paper, which aims to solve the overfitting problem
when using KPLS method. In this paper, the KNAP method
is introduced into SGB-KPLS modeling procedure and a final
method called KNAP-SGB-KPLS (modified kernel partial least
squares (MKPLS) for short) is proposed.

The rest of the paper is organized as follows. In Sec-
tion 2, the basic theories and algorithms of KPLS and SGB
are introduced, and then detail descriptions of the proposed
methods (KNAP and MKPLS) are given. Computer simulations
are carried out in Section 3. Finally, our conclusions are drawn
in Section 4.

2.  Modified  kernel  partial  least  squares

2.1.  Notations

In order to conveniently understand the below mentioned
symbols, some essential notations are illuminated in this sec-
tion. Throughout the present work, matrices will be noted in
capital bold (as in X), column vectors in small bold (as in x),
and scalar variables in italicized characters (as in n). Some
notational symbols are listed below:

F feature space
˚(X) data matrix in feature space F

K kernel matrix K = ˚(X)˚T(X)
K* net analyte kernel matrix
X independent variables matrix
Y dependent variables matrix
I identity matrix
b regression coefficient vector
h number of latent variables
m number of basis regression models when using SGB
method
n number of samples in data set
nc size of subsample used in the SGB method
v shrinkage value

2.2.  Kernel  partial  least  squares

KPLS is an extension of PLS in the nonlinear feature space.
According to Cover’s theorem, the nonlinear structure in
the feature space is more  likely to be linear after a high-
dimensional nonlinear mapping (Rosipal, 2003). This higher
dimensional linear space is referred to as the feature space
F (Zhang et al., 2010b). First, consider a nonlinear transfor-
mation of the input data xi, i = 1, 2, . . ., n into feature space
F.

 ̊ : xi ∈ Rn → ˚(xi) ∈ F (1)

where it is assumed that
∑n

i=1˚(xi) = 0, i.e. mean centering
in the high-dimensional space should be performed before
applying KPLS. ˚(xi) is a nonlinear mapping function that
projects the input vectors from the original space to F. Note
that the dimensionality of the feature space F is arbitrarily
large, and can even be infinite. Denote ˚(X) as the (n × s)
matrix whose ith row is the vector ˚(xi) in the s-dimensional
feature space F. By means of the introduction of the ker-
nel trick K(xi, xj) = ˚(xi)˚T(xj), one can avoid both performing
explicit nonlinear mappings and computing dot products in
the feature space (Cao et al., 2011). The commonly used ker-
nel functions are the polynomial kernel K(x1, x2) =

〈
xi, xj

〉r
,

radial basis kernel K(x1, x2) = exp
(

−
∥∥xi − xj

∥∥2
/c

)
, and sig-

moidal kernel K(x1, x2) = tanh(ˇ0
〈

xi, xj

〉
+ ˇ1), where c, r, ˇ0,

ˇ1 are the parameters of the kernels and should be predefined
by users. The steps of KPLS method are as follows:

For i = 1, 2, . . ., h (h is the number of latent variables), repeat
the following steps:

Step 1: Initialize, set Ki = K, Yi = Y, set ui equal to any column
of Yi.

Step 2: Compute the score vector of ˚(X) : ti =
Kui/

√
ui

TKiui.
Step 3: Compute the loading vector of Yi : qi = Yiti/

∥∥ti
Tti

∥∥.
Step 4: Compute the score vector of Yi : ui = Yiqi/qi

Tqi.
Step 5: If ui converges, then go to step 6; else return to step

2.

Step 6: Deflation

{
Ki+1 = (I − titi

T/ti
Tti)Ki(I − titi

T/ti
Tti)

Yi+1 = (I − titi
T/ti

Tti)Yi

,

i = i + 1, and go to step 2.
After all the h latent variables are extracted, the regression

coefficient b in KPLS can be obtained from

b = ˚TU(TTKU)
−1

TTY (2)

where T = [t1, t2, . . ., th] and U = [u1, u2, . . .,  uh] are the score
matrix. As a result, when the number of test data is nt, the
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