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Background:Musculoskeletal soft tissues, such as articular cartilage, ligaments, kneemeniscus and intervertebral
disk, have a complex structure, which provides elasticity and capability to support and distribute the body loads.
Soft tissues describe an inhomogeneous and multiphasic structure, and exhibit a nonlinear, time-dependent
behavior. Their mechanical response is governed by a substance composed of protein fiber-rich and
proteoglycan-rich extracellularmatrix and interstitial fluid. Protein fibers (e.g. collagen) give the tissue direction
dependent stiffness and strength. To investigate these complex biological systems, the use of mathematical tools
is well established, alone or in combination with experimental in vitro and in vivo tests. However, the
development of these models poses many challenges due to the complex structure and mechanical response
of soft tissues.
Methods: Non-systematic literature review.
Findings: This paper provides a summary of different modeling strategies with associated material properties,
contact interactions between articulating tissues, validation and sensitivity of soft tissues with special focus on
knee joint soft tissues and intervertebral disk. Furthermore, it reviews and discusses some salient clinical findings
of reported finite element simulations.
Interpretation: Model studies extensively contributed to the understanding of functional biomechanics of soft
tissues. Models can be effectively used to elucidate clinically relevant questions. However, users should be
aware of the complexity of such tissues and of the capabilities and limitations of these approaches to adequately
simulate a specific in vivo or in vitro phenomenon.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical function of musculoskeletal soft tissues, such as ar-
ticular cartilage, ligaments, meniscus or intervertebral disk, is in
supporting and distributing the loads generated by muscles, body
weight and inertial forces and allowing for the controlled motion of
the human body. In order to investigate the mechanics of these biolog-
ical systems,mathematical tools, such asfinite elementmethods act as a
complementary approach to in vivo and in vitro studies. It provides
valuable insights into the behavior of the structures' function and are
helpful for explorative preclinical investigations.

As a matter of fact, soft tissues exhibit mechanical characteristics
with a higher complexity than most engineering materials and struc-
tures. For modeling purposes it is crucial to select a material law as
well as material parameters that well describe the mechanical proper-
ties of the soft tissue with regard to the investigation scope.

The mechanical behavior of soft tissues is governed mainly by the
major phases of these materials. The solid phase with collagen fibers,
proteoglycans, other proteins and cells as well as an interstitial fluid
phase composed of water and electrolytes (Mow and Huiskes, 2005).
While substances like proteoglycans bind water to form a firm gel and
give the tissue its resiliency, the collagen fibers give the tissue its tensile
strength. The specific arrangement and hierarchical organization of the
fibers have major influences on the mechanical behavior of the tissue
(Fung, 1993). It is naturally optimized to fulfill the specific mechanical
function of each tissue (Schneck and Bronzino, 2003). Hyaline cartilage
for example is highly hydrated and is comprised of fine collagen fibrils
oriented isotropically in planes parallel to the articular contact. This
specific orientation gives the cartilage its high resistance to
compressive loads and provides good lubrication to highly mobile
joint surfaces (Bell et al., 2006). Differently, soft tissues made of
fibrocartilage, e.g. annulus fibrosus of the intervertebral disk, knee
meniscus or temporomandibular joint, aremade up of compact collagen
fiber bundles oriented in the circumferential direction of the tissue.
However, a closer look at the fiber distribution reveals not only
circumferentially oriented fibers. For example, the meniscus also
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consists of a few radial tie fibers in the central portion (Petersen and
Tillmann, 1998). In the superficial layer the fibers are randomly distrib-
uted (Petersen and Tillmann, 1998). Such locally varying collagen fiber
arrangement can also be found in other soft tissues and are of major
interest in modeling soft tissues since the collagen fibers are
quantitatively the major organic component (Mow and Huiskes, 2005).
Proteoglycans are the second most abundant organic component
(Mow and Huiskes, 2005). With their fixed charge density, they are
involved in osmotic swelling (Schneck and Bronzino, 2003), which regu-
lates the pressure and tissue hydration, hence, contributing to the visco-
elastic nature of the soft tissue. The fluid phase also plays an
important role in terms of viscoelasticity. The pressure of the inter-
stitial fluid due to osmotic imbibition and mechanical loads creates
a stress in the solid phase, which contributes to the stiffness and
the apparent incompressibility of the soft tissue (Mow and Huiskes,
2005).

Simulations of musculoskeletal structures are usually not
limited to one specific soft tissue. Instead, most studies are focused
on the interaction between the various anatomical components,
such as contact between cartilage layers or ligament wrapping,
which introduces a nonlinearity in a numerical model and can be
particularly critical in biphasic models or when considering
friction.

Moreover, simulations ofmusculoskeletal tissues targeted to achieve
a clinical impact are not usually limited to modeling the complexity of
the response of these materials or their interaction. Modeling of
pathologies, like continuous degeneration, damage, failure or crack
propagation introduces geometric discontinuity in the tissue and
constitutes another challenge.

The present non-systematic review discusses different model-
ing strategies with associated material properties, contact interac-
tions between articulating tissues, validation and sensitivity
analyses of soft tissues and provides some salient clinical findings
of reported finite element simulations with special focus on the
soft tissues of the knee and the intervertebral disk. Nevertheless,
as soft tissues exhibit analogous structure and properties in all

anatomical regions, modeling approaches and material constitu-
tive laws can be adapted to other soft tissues with little effort.

2. Material laws for soft tissues

2.1. Static response

Static analyses can be used to investigate the behavior of the
soft tissue at one certain time point, for example instantaneous or
equilibrium response. In this case the time-dependent behavior,
e.g. creep or relaxation, of the soft tissue is neglected.

2.1.1. Isotropic, linear elasticity
The simplest way to model the mechanical response of a soft

tissue is to use a linear elastic and isotropic formulation (Table 1).
In such case it is assumed that the stress–strain curve is linear
and not dependent on the direction of load. Due to their simplicity,
linear elastic isotropic materials can be used to limit numerical
difficulties in challenging contact formulations when the investi-
gation of the response of the tissues in the proximity of the contact
is not the main focus, e.g. in kinematic analyses of the knee, as well
as for debugging purposes of more complex models.

One of the first finite element simulations of the meniscus used
a linear elastic and isotropic material model in a strongly geomet-
rically simplified, axisymmetric model (Sauren et al., 1984). Later
studies also included linear elastic isotropic material formulations
for e.g. articular cartilage, menisci (Beillas et al., 2001; Pena et al.,
2005a; Perie and Hobatho, 1998) or nucleus pulposus of the inter-
vertebral disk (Ueno and Liu, 1987) and considered a more detailed
geometry. In a sensitivity study, in which the linear elastic material
properties of e.g. cartilaginous and meniscal tissue were varied in a
physiological range (Beillas et al., 2007) it was shown that the var-
iation of articular cartilage properties highly influenced the carti-
lage contact pressure response. In general, higher elasticity and
Poisson's ratios of the cartilage tissue caused higher maximal
contact pressure (Beillas et al., 2007).

Table 1
Material formulations for statically responding simulations.

Linear material formulations (Hooke's law)

General formulation (anisotropic material)
σ = C · ε
with

σ ¼

σ11
σ22
σ33
σ23
σ13
σ12

2
6666664

3
7777775
; ε ¼

ε11
ε22
ε33
2ε23
2ε13
2ε12

2
6666664

3
7777775
;C ¼

C1111 C1122 C1133 C1123 C1113 C1112
C2211 C2222 C2233 C2223 C2213 C2212
C3311 C3322 C3333 C3323 C3313 C3312
C2311 C2322 C2333 C2323 C2313 C2312
C1311 C1322 C1333 C1323 C1313 C1312
C1211 C1222 C1233 C1223 C1213 C1212

2
6666664

3
7777775

σ: stres vector; ε: strain vector; C: 4th-order stiffness tensor
For orthotropic, transversal isotropic and isotropic materials:

C ¼

C1111
C2211
C3311
0
0
0

C1122
C2222
C3322
0
0
0

C1133
C2233
C3333
0
0
0

0
0
0

C2323
0
0

0
0
0
0

C1313
0

0
0
0
0
0

C1212

2
666664

3
777775

Orthotropic material Transversal isotropic material Isotropic material

C2211 ¼ C1122
C3311 ¼ C1133
C3322 ¼ C2233

C2211 ¼ C1122
C3311 ¼ C3322 ¼ C1133 ¼ C2233

C1111 ¼ C2222
C2323 ¼ C1313

C1212 ¼ 1
2 C1111−C1122ð Þ

C1111 ¼ C2222 ¼ C3333
C2323 ¼ C1313 ¼ C1212

C1122 ¼ C1133 ¼ C2233 ¼ C2211 ¼ C3311 ¼ C3322

Nonlinear fiber reinforced material formulations

σ = σgs + σfib with Efib ¼ E0fib þ Eεfibεfib for εfibN0
0 for εfibb0

(

σgs: ground substance stress; σfib: fibril stress; Efib: fibril tensile strain dependent modulus; εfib: fibril strain; Efib0 : initial fibril stiffness; Efibε : fibril stiffness
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