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A B S T R A C T

Measurements of shoulder kinematics during activities of daily living (ADL) can be used to evaluate
patient function before and after treatment and help define device testing conditions. The purpose of this
study was to demonstrate the feasibility of using wearable inertial measurement units (IMUs) to track
shoulder joint angles while performing actual ADLs outside of laboratory simulations. IMU data of 5
subjects with normal shoulders was collected for 4 h at the subjects’ workplace and up to 4 h off-work. An
Unscented Kalman Filter (UKF) enhanced with gyroscope bias modeling and zero velocity updates
demonstrated an accuracy of about 2� and was used to estimate relative upper arm angles from the IMU
data. The overall averaged 95th percentile angles were: flexion 128.8�, abduction 128.4�, and external
rotation 69.5�. These peaks angles are similar to other investigator’s reports using laboratory simulations
of ADLs measured with optical and electromagnetic technologies. Additionally, with a Fourier transform
the 50th percentile frequency was determined and used to extrapolate the typical number of arm cycles
in a 10 year period to be 649,000. Application of the UKF with the additional drift correction made
substantial improvements in shoulder tracking performance and this feasibility data suggests that IMUs
with the UKF are suitable for extended use outside of laboratory settings. The data provides a novel
description of arm motion during ADLs including an estimate for the 10 year cycle count of upper arm
motion.

ã 2016 Elsevier B.V. All rights reserved.

1. Introduction

Due to the technical challenges of making 3D measurements,
kinematic descriptions of three dimensional arm motion have
been limited to laboratory studies. Studies such as those by
Magermans [1] Andel [2], and Maier [3] used electromagnetic and
stereophotogramatic systems to measure motion for simulated
tasks such as hair combing, hand to back pocket, washing, and
reaching above the shoulder. Inertial measurement units (IMUs)
are sensors that contain combinations of gyroscope, accelerome-
ter, and magnetometer technologies. The capabilities of these
sensors have increased to where they appear suitable to use for
joint biomechanics measurements. The purpose of this study was
to demonstrate their feasibility to track three dimensional upper
arm motion of usual activities in native environments. Such in-situ

data can be used to characterize shoulder kinematics during
activities of daily living (ADLs), help characterize how laboratory
simulated activities compare with more general daily motion, and
provide information for clinical evaluation of shoulders and their
treatment.

El-Gohary et al. [4], presented an unscented Kalman filter (UKF)
to estimate shoulder and elbow joint angles with a Root Mean
Square (RMS) angle error of <8�. In this study, we modified that
filter with random drift modeling of the sensor, natural range of
motion constraints, and zero-velocity updates. We then used IMUs
to collect measurements from subjects for up to 4 h of work and 4 h
of recreational activities and present the distribution of arm angles.
Finally, we estimate a representative frequency of motion and
extrapolate the number of cycles performed by the upper arm for a
10-year period.

2. Methods

In this section, we describe the algorithms to track shoulder
motion using IMUs attached to the sternum and upper arm of the

* Corresponding author.
E-mail addresses: Bryan.kirking@djoglobal.com (B. Kirking),

mahmoud@apdm.com (M. El-Gohary), Young.Kwon@nyumc.org (Y. Kwon).

http://dx.doi.org/10.1016/j.gaitpost.2016.06.008
0966-6362/ã 2016 Elsevier B.V. All rights reserved.

Gait & Posture 49 (2016) 47–53

Contents lists available at ScienceDirect

Gait & Posture

journal homepage: www.else vie r .com/locate /gai t post

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gaitpost.2016.06.008&domain=pdf
mailto:Bryan.kirking@djoglobal.com
mailto:mahmoud@apdm.com
mailto:mahmoud@apdm.com
mailto:Young.Kwon@nyumc.org
http://dx.doi.org/10.1016/j.gaitpost.2016.06.008
http://dx.doi.org/10.1016/j.gaitpost.2016.06.008
http://www.sciencedirect.com/science/journal/09666362
www.elsevier.com/locate/gaitpost


subject. We then describe the three different methods employed to
mitigate the effect of sensor random drift. Finally we describe the
protocol for attaching the IMUs and collecting upper arm motion
during activities of daily living.

2.1. Algorithms

To describe angles and motions of an arm segment relative to its
neighboring segments, we use a method of modeling based on a
sequence of links connected by joints often used with robotic
manipulators [5]. In our algorithm, we combine kinematic models
of the trunk and arm with state space methods to estimate the joint
angles. The trunk is modeled with three degrees of freedom (DOFs),
and is connected to the arm with the shoulder joint also having
three DOFs. This method does not represent the actual anatomy
with the scapula and clavicle and the resulting angles are humeral
– thoracic and not humeral – scapular.

We use the Newton-Euler equation of motions to recursively
propagate the velocity and acceleration through the kinematic
chain to create the measurement model. The process model
represents the joint angles to be estimated as a function of the
velocity and acceleration measured by the inertial sensors. The
process and measurement models are then used with the
unscented Kalman filter to estimate angles. Contrary to previous
studies, our algorithm utilizes the rotational, translational and
gravitational components of acceleration [4] but ignores magne-
tometer readings

2.2. Modeling sensor random drift

To reduce the random drift, we model the bias of the sensors.
The 3D gyroscope bias and 3D accelerometer bias are modeled as
random walk with zero-mean white noise. For more details on the
state and observation equation used with the UKF, the reader is
advised to refer to the description in El-Gohary and McNames [6].

2.3. Anatomical constraints in the shoulder and elbow

The state model equations incorporate prior knowledge of
physical constraints on state estimates. Human shoulder internal
and external rotation around the humerus rarely exceeds �90�.
Similarly, the shoulder cannot attain more than 180� of abduction
or flexion [7]. In this study, the constraint information is
incorporated in the UKF during the time update step.

2.4. Zero-velocity updates

Only shoulder motions greater than 10 s were used to estimate
angles. Since our algorithm uses gravity to estimate attitude, these
estimates helped reduce the effect of gyroscope random drift on
estimates of flexion/extension and abduction/adduction angles.
However, the measurements lack an absolute reference for
heading about the vertical axis. Therefore, we used an error
correction technique known as zero-velocity updates, which has
been used in gait analysis and pedestrian navigation [8]. When the
rotational rate around the vertical axis was less than 3�/s for at

least 0.25 s, the arm was considered static and the measurement
equation is augmented with a pseudo-measurement of gyroscope
vertical axis random bias. Putting pseudo-measurements into the
UKF, provides additional benefits, such as estimates of the
gyroscope bias.

2.5. Accuracy assessment

To evaluate the inertial tracking system, we compared the joint
angles from the tracker with an industrial C3 robot arm (Epson
Robots, California). The robot arm has 6� of freedom, with three
segments attached to the robot stationary base: shoulder, elbow
and wrist. The robotic arm was programmed to produce human-
like motion, which involved rotation of the three joints at an
average rotational rate range of 225–360�/s. Table 1 shows the arm
range of motion and maximum operating speed. Three Opal
sensors (APDM, Portland, OR), each containing triaxial acceler-
ometers, magnetometers, and gyroscopes were placed on the robot
segments to monitor motion for 15 min. The average root mean
squared error (RMSE) between the angles was then calculated.

2.6. Activities of daily living assessment

A nonrandom sample of 5 subjects with normal shoulders was
selected partly based on occupation. Subjects were volunteers
from the local community and provided informed consent. The
occupations were: dental hygienist, primary school teacher,
mechanical engineer, administrative assistant, and retail associate.
Subjects wore the OPAL IMUs (Fig. 1) for 4 h while at their
workplace performing their normal activities and then for 4 h off-
work. The IMUs were secured with a strap and two sided tape. The

Table 1
Robot maximum speed and range of motion used during evaluation of the tracker, and baseline and modified tracker root mean square errors.

Joint motion Max rate (�/s) Max range of motion (�) Baseline tracker (�) Modified tracker (�)

Shoulder internal/external 450 �180, +180 8.1 3.0
Shoulder flexion/extension 450 �160, +65 2.4 1.6
Elbow flexion/extension 514 �51, +225 2.6 2.0
Forearm supination/pronation 553 �200, +200 2.1 1.2
Wrist flexion/extension 553 �135, +135 2.2 1.5
Wrist twist 720 �360, +360 3.9 2.8

Fig. 1. Placement of inertial measurement units on subject’s manubrium and upper
arm.
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