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1. Introduction

Orthoses are commonly prescribed for individuals with cerebral
palsy (CP). Typical goals of the prescription include enhancing gait
quality and energy economy [1], correcting positional pathologies
of the foot [2], and preventing contractures by stretching of spastic
muscles [3]. Orthoses influence the ankle and foot by providing a
control moment opposing ankle motion, and also stabilize the
motions of the mid- and forefoot joints. Common orthosis designs
for children with CP are the ankle-foot orthosis (AFO) and foot
orthosis (FO). Common AFO designs are the solid (SAFO), posterior
leaf spring (PLS), hinged (HAFO), and supra-malleolar orthosis
(SMO), while a typical FO is the University of California,
Biomechanics Laboratory design (UCBL). There is limited guidance

to aid in the selection of an optimal orthosis for an individual
patient when the goal is improving overall gait quality.

1.1. Predicting outcomes

While various studies have analyzed the effect of orthoses on
gait quality [4], none have been shown to reliably predict
improvements. Buckon compared the SAFO, PLS, and HAFO designs
in spastic CP [1]. The study concluded that AFOs improved many of
the outcomes analyzed, but that no single AFO design was optimal
for every individual. Buckon’s results emphasize the need for
customized orthosis prescriptions. However, without an estimate
of how an orthosis will affect gait, a patient would need to be tested
in all AFO designs. This is not practical for the clinical setting.

Rodda and Graham [5] presented a biomechanically based
orthotic management algorithm which used gait and postural
patterns to determine the appropriate orthosis design. However,
the proposed system’s clinical benefit has never been presented. In
addition, the algorithm is ambiguous, recommending multiple AFO
designs for a single gait pattern.
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A B S T R A C T

A statistical orthosis selection model was developed using the Random Forest Algorithm (RFA). The

model’s performance and potential clinical benefit was evaluated. The model predicts which of five

orthosis designs – solid (SAFO), posterior leaf spring (PLS), hinged (HAFO), supra-malleolar (SMO), or foot

orthosis (FO) – will provide the best gait outcome for individuals with diplegic cerebral palsy (CP). Gait

outcome was defined as the change in Gait Deviation Index (GDI) between walking while wearing an

orthosis compared to barefoot (DGDI = GDIOrthosis � GDIBarefoot). Model development was carried out

using retrospective data from 476 individuals who wore one of the five orthosis designs bilaterally.

Clinical benefit was estimated by predicting the optimal orthosis and DGDI for 1016 individuals (age:

12.6 (6.7) years), 540 of whom did not have an existing orthosis prescription. Among limbs with an

orthosis, the model agreed with the prescription only 14% of the time. For 56% of limbs without an

orthosis, the model agreed that no orthosis was expected to provide benefit. Using the current standard

of care orthosis (i.e. existing orthosis prescriptions), DGDI is only +0.4 points on average. Using the

orthosis prediction model, average DGDI for orthosis users was estimated to improve to +5.6 points. The

results of this study suggest that an orthosis selection model derived from the RFA can significantly

improve outcomes from orthosis use for the diplegic CP population. Further validation of the model is

warranted using data from other centers and a prospective study.
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1.2. The Random Forest Algorithm

Utilizing statistical machine learning techniques to construct a
model from a large pool of retrospective data may be a more
effective way to develop a clinically useful orthosis prescription
tool. The Random Forest Algorithm (RFA) is a statistical classifica-
tion method that has been applied to a variety of fields, from gene
expression [6] to terrain classification [7]. More recently, it has
been harnessed to predict likelihood of good outcomes from
orthopedic surgeries [8,9].

The RFA works by utilizing a large group of independent
classification and regression trees (CARTs) built from measured
features (e.g. walking speed) to predict responses (e.g. change in
gait) for a set of observations (e.g. limbs) [10]. Each CART is built
using a random sample of observations and features. This
randomness renders the CARTs independent of one another. The
CARTs are collected to form an ensemble or ‘forest’. The response
predicted by the ensemble is based on vote aggregation. Each
individual CART has only a small influence on the overall
prediction. If more CARTS vote for outcome A over outcome B,
then the ensemble predicts outcome A over B. Using RFA
methodology versus a single CART is beneficial because it generally
gives more accurate and robust predictions [10].

1.3. Gait quality

A common measure used to quantify overall gait quality is the
Gait Deviation Index (GDI) [11]. The GDI is a single number that
represents the difference between the gait of an individual and
that of a typically developing control group. A GDI over 100 reflects
normal kinematics, and each decrement of 10 GDI points
represents one standard deviation from normal. An improvement
in GDI of +5 points is considered clinically meaningful for surgical
interventions that are performed to improve function [11]. In this
study, we chose the change in GDI between walking with an
orthosis and walking barefoot as the outcome measure (DGDI =
GDIOrthosis � GDIBarefoot).

1.4. Study goals

The goals of the study were to: (1) use the RFA to build a model
that can predict changes in GDI for individuals in various orthosis
designs, without having to fabricate and test each design on the
individual and (2) estimate the potential clinical benefit of the
model.

2. Methods

The study consisted of two steps; Step 1: Build a model based on
retrospective data from limbs with an existing orthosis prescrip-
tion and Step 2: Evaluate the potential benefit of the model by
applying it to a representative sample of patients.

Step 1: model development. Data from a large sample of
individuals walking barefoot and with one of the five orthosis
designs was needed to build the predictive model using the RFA. A
search of our clinical database was conducted to identify this
‘modeling sample’. Each individual’s data were then separated into
one of five groups, depending on which orthosis design was
prescribed. We then used the RFA to build and test five independent
predictive ensembles corresponding to the five orthosis designs. The
ensembles were then combined to form a single predictive model
(Fig. 1a). The model simultaneously predicts the change in GDI for all
five orthosis designs based on an individual’s barefoot walking data.
The model makes a recommendation for a specific orthosis design
(or predicts no orthosis will provide benefit) based on the highest
predicted response for the limb (Fig. 1b).

A good outcome was defined as DGDI � +3 points. We decided
that the low cost, relatively low invasiveness, and ease of
intervention of an orthosis prescription warranted a slightly lower
threshold for benefit than the DGDI � +5 generally required of a
surgical intervention. It should be noted that the methodology in
this study would be unchanged if a higher (or lower) threshold was
chosen.

Step 2: benefit estimation. A representative sample of the
diplegic CP population was then needed to estimate the clinical
benefit of the model. A second search of the clinical database was
conducted to identify this ‘benefit sample’. Individuals were
included in the benefit sample regardless of whether or not they
had an existing orthosis prescription, since only barefoot walking
data is required by the model to make predictions. All limbs from
the benefit sample were then processed by the model (Fig. 1c). The
benefit was calculated by comparing the average DGDI from
existing orthosis prescriptions to the average predicted DGDI from
the orthosis designs recommended by the model.

2.1. Modeling sample

Modeling data for constructing RFA ensembles was compiled
from the clinical database at our center. Inclusion criteria were:

� diagnosis of diplegic CP,
� walking motion trials collected barefoot,
� walking motion trials collected wearing an orthosis during same

visit as the barefoot trials,
� prescription of an SAFO, PLS, HAFO, SMO, or FO.
� same orthosis design worn bilaterally.

Multiple visits from individuals were allowed since highly
correlated observations do not adversely affect the performance of
the RFA [10].

2.2. Modeling

Five RFA ensembles were constructed; one for each of the five
orthosis designs (SAFO, PLS, HAFO, SMO, or FO). Each ensemble
predicts the DGDI for a limb wearing the specified orthosis
compared to walking barefoot. For example, the HAFO model
predicts the change from barefoot gait to gait wearing an HAFO,
while the SAFO model predicts the change from barefoot gait to
gait wearing an SAFO, etc. The ensembles were provided with
features drawn from medical history, physical exam measures,
and kinematic data derived from a three-dimensional gait
analysis. Features were objectively ranked in order of their
importance by the RFA [10,12]. Model reduction was carried out
by systematically reducing the number of features available to
each ensemble until removing additional features significantly
decreased performance accuracy. Performance metrics were
calculated using estimates derived from samples not randomly
selected for the construction of a CART (unbiased out-of-bag
estimates). As only about 63% of the modeling sample was directly
used for the construction of a CART, the remaining out-of-bag
samples were used to calculate performance. Using these out-of-
bag estimates eliminates the need for a separate test set [10,13].
Each ensemble’s performance was assessed using standard
diagnostic metrics based on (1) outcome classification (good/
poor based on the +3 DGDI threshold) and (2) predicted GDI
change. Classification metrics consisted of accuracy, sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), and Matthews correlation coefficient (MCC). Metrics
for regression analysis were coefficient of determination (r2) and
root mean squared error (RMSE). Modeling was performed using
Matlab with the Statistics Toolbox (2012a).
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