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a  b  s  t  r  a  c  t

This work presents a novel algorithm and its implementation for the stochastic optimiza-

tion of generally constrained Nonlinear Programming Problems (NLP). The basic algorithm

adopted is the Iterated Control Random Search (ICRS) method of Casares and Banga (1987)

with modifications such that random points are generated strictly within a bounding box

defined by bounds on all variables. The ICRS algorithm serves as an initial point determi-

nation  method for launching gradient-based methods that converge to the nearest local

minimum. The issue of constraint handling is addressed in our work via the use of a filter

based methodology, thus obviating the need for use of the penalty functions as in the basic

ICRS method presented in Banga and Seider (1996), which handles only bound constrained

problems. The proposed algorithm, termed ICRS-Filter, is shown to be very robust and reli-

able  in producing very good or global solutions for most of the several case studies examined

in  this contribution.
©  2015 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1.  Introduction

Optimization of nonconvex programming problems has an important

role in Applied Mathematics, Computer Science as well as scientific and

engineering practices. The significance of the global solution in some

cases is ‘non-negotiable’, as it could signify “profit or loss” for chemical

manufacturers, or “make-or-break” functional properties of proteins in

drugs research by predicting their conformational structure.

There are two main approaches to addressing global optimization

problems: deterministic and stochastic methods. Reviews of the deter-

ministic global optimization methods are given in Floudas (1999) and

Floudas and Misener (2009). For a given problem, deterministic meth-

ods are able to provide a certificate of global optimality of the final

solution. Deterministic methods generally tend to be computationally

expensive with computational times growing very quickly with prob-

lem sizes.

The other approach, which is based on stochastic algorithms,

improves an initial point using stochastic perturbations. In the

∗ Corresponding author.
E-mail address: vsv20@cam.ac.uk (V.S. Vassiliadis).

stochastic approach, the objective function is evaluated at randomly

generated points and the process terminates when there is no further

improvement in the objective function value as well as satisfaction

of convergence criteria. Stochastic methods can only guarantee solu-

tions which are local optima, without being able to certify global

optimality. However, the methods’ ability in efficiently and reliably

locating local optima has been proven in various practical appli-

cations, especially for very large problems when “good enough”

solutions are acceptable. Stochastic methods frequently employ mul-

tiple starting points to increase the chance of finding the global

optimum (Hickernell and Yuan, 1997; Torn, 1978; Fouskakis and Draper,

2002).

Our work falls into the latter category of optimization methods and

a new method, termed ICRS-Filter Method, will be presented which

is the combination between the Integrated Controlled Random Search

(ICRS) algorithm originally developed by Casares and Banga (1987) and

the Filter approach (Fletcher and Leyffer, 2000) to deal with generally

constrained NLP problems.
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2.  The  generic  ICRS  method

The ICRS method was first developed by Casares and Banga
(1987). Banga proposed the ICRS method as a stochastic search
method for global optimization of problems with bounds on
variables. The method operates by generating random points
obeying a normal distribution within the bounds. As the
iterations progress, and as acceptances of improving points
become fewer, the standard deviation of the normal distribu-
tion is suitably reduced thus inducing a more  localized search
around a current point desired to be improved.

The original ICRS algorithm applies to an unconstrained
problem, which is assumed to have the following formulation
(P1):

Problem P1

min
x

f (x) (2.1a)

subject to

xL ≤ x ≤ xU (2.1b)

where x ∈ R
n.

The Algorithm is presented as Algorithm 1. The ICRS algo-
rithm is a search method, which instead of employing a set
of search directions, it uses randomly generated points. As
the Algorithm generates points closer to a local minimum,
the standard deviation � is reduced, hence the “contracting
spheres” picture as shown in Fig. 2.1.

Algorithm 1. ICRS algorithm.

1: Initial Guess ←x0

2: Initial Deviation Factor ←k1

3: Reduction Deviation Factor ←k2

4: Expansion Deviation Factor ←k3

5: Maximum Number of Samples ←N Sample

6: Maximum Number of Failures ←N Failure

7: Variable Convergence Tolerance ←ε

8: Evaluate Best Objective Function Value f Best← f(x0)

9: Compute Initial Deviation Factor � ← k1 · (xU− xL)

10: Set Current Solution Vector x Best← x0

11: Set ifailure ← 0

12: for i ← 1 to N Sample do

13: Generate a new point x New which is Normally
distributed between xU and xL, given the Mean x Best

and Standard Deviation �

14: fNew← f(xNew)

15: if f New < f Best then

16: Variable Tolerance ←�(x New, x Best)

17: Update Objective Value f Best← f New

18: Update Current Solution x Best← x New

19: Expand Deviation Factor � ← k3 · �

20: if Variable Tolerance <ε then

21: Exit Sampling Loop

22: end if

23: else

24: if f New ≥ f Best then

25: ifailure ← ifailure + 1

26: if ifailure > N Failure then

27: Reduce Deviation Factor � ← k2 · �

28: Reset Counter ifailure ← 0

29: end if

30: end if

31: end if

32: end for

33: return Best Solution x Best and Best Objective Value
f Best

It is important to note that the ICRS algorithm is a random-
ized direct search method and this is to be contrasted with
other well-known methods in which the search directions are
generated deterministically, such as the Nelder-Mead Simplex
Algorithm (Correia et al., 2010; Nelder and Mead, 1965). Their
algorithm is evidently unable to handle any other constraints
on the variables’ domain, which can be easily induced by
adding equalities or inequalities to the original (P1)  problem.
Consequently, the ICRS approach is only effective at solving
unconstrained optimization problems.

The most important step in the ICRS algorithm is the gen-
eration of normally distributed points within given bounds.
The following methods have been attempted in this work:

1. Projection to bounds method
The principle behind the method is very simple: given x0

and �, generate a random point x which is normally distributed
with mean x0 and with a standard deviation �. The method
used to generate the points x is adapted from Box and Muller
(1958). Furthermore, if any elements in x are falling below
the lower bound or exceeding the upper bound, they will be
replaced by the corresponding lower or upper bound values,
i.e. “clipped to the bounds”.

The “Projection to bounds method” often causes the sampling
points to “stick” onto the bounds too often and leads to an
uneven distribution in the interior of the sampling region.
Furthermore, in problems containing functions, which are
undefined at the bounds, the method could lead to numerical
instabilities. Therefore, the method is not strongly recom-
mended, but it is still included in the discussion as a legacy
of the original implementation.

Fig. 2.1 – Illustration of the ICRS algorithm.
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