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a  b s  t  r  a  c  t

In this work, a general theory to account for any kind of polarization arising from polar as well as ions induced

interactions in fluid mixtures is proposed. The general treatment is based on the self-consistent mean field theory

(SCMF) that was originally proposed and applied for pure components using integral equation theories and molecu-

lar  simulation studies. The extended SCMF is consistent with theory-based equations of state applied to hard chain

mixtures. The theory is extended to mixtures and compared to molecular simulation data. The comparison to molec-

ular  simulation data shows good to excellent results for phase co-existence properties, energy and effective dipole

moment. The validity of the theory is demonstrated by studying VLE of highly non-ideal mixtures of aldehyde and

ketones using statistical association fluid theory.
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1.  Introduction

Significant progress has been made in developing theories
for polar molecules characterized by permanent multipole
moments. The developments have mainly been attributed
to statistical mechanical perturbation theories. Various mod-
els are now available for dipolar, quadrupolar and octupolar
molecules with fairly good accuracy (e.g. Twu and Gubbins,
1978b). These non-polarizable models are derived based on
pairwise additive approximation. Polar molecules, however,
exhibit many-body induced polarization interactions and their
energies are impossible to express as a sum of pairs. The effect
of polarization interactions is not by any means negligible.
For example, the average dipole moment of water increases
up to 40% as a result of the large polarization (Gregory et al.,
1997). The non-additivity of induced interactions undoubt-
edly complicates the theoretical treatment of the induction
effect since knowledge of fourth and higher order correlation
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functions is required (Joslin et al., 1985). Unfortunately, taking
into account the many-body interactions is crucial if accurate
results are desired. Thus, it is not surprising that the theo-
retical techniques of Mcdonald (1974), Larsen et al. (1977) and
Winkelmann (1983, 1985) for the treatment of the induction
effect were inaccurate since the many-body interactions were
ignored. Therefore, inclusion of the many-body interactions
is inevitable in any theoretical route to the treatment of the
polarizability effect.

A convenient approach to the problem of the many-body
interactions is to replace these interactions with an effective
potential that incorporates the average many-body interac-
tion into the interaction between pairs. The approach has been
adopted by Wertheim (1973, 1977a,b,c), Høye and Stell (1980),
Carnie and Patey (1982) and Høye and Lomba (1994) as a basis
for theoretical treatment of the polarizability effect. The stud-
ies just mentioned were successful in faithfully reproducing
the microscopic structure and thermodynamic properties of
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polarizable particles. Unlike other approaches, the Wertheim
approach, which is called the renormalization perturbation
theory (RPT), has been utilized with theory-based equations of
state. The RPT was formulated based on a cumbersome graph-
ical theory for dipolar-dipolar polarizable particles. Extension
to mixtures and dipolar–quadrupolar polarizable particles was
presented by Venkatasubramanian et al. (1984) and Gray et al.
(1985). The RPT has been incorporated into equations of state
to take into account the polarizable dipolar–dipolar systems
(Kraska and Gubbins, 1996; Kleiner and Gross, 2006). Although
the RPT showed good results, it is not an easy task to make
it applicable to higher polarizable multipolar molecules. Even
the extension to polarizable dipolar–quadrupolar molecules
that has been carried out by Gray et al. (1985) was not trivial; it
was derived with a different approach from that of the original
complex graphical theory approach used by Wertheim.

An alternative theory to the renormalized perturbation
theory is the self-consistent mean field (SCMF) theory pro-
posed by Carnie and Patey (1982). The SCMF is equivalent to
the RPT in terms of accuracy (Carnie and Patey, 1982). It is
however based upon physical arguments rather than a math-
ematical approach. Further, the SCMF can be extended to take
account of any polarizable multipolar interaction in a straight-
forward manner. The theory has been tested for various types
of molecules such as water and ammonia using integral equa-
tion theories (Carnie and Patey, 1982; Perkyns et al., 1986;
Caillol et al., 1987). It has also been tested with molecular sim-
ulation for a fluid of polarizable Lennard–Jones particles with
dipoles and quadrupoles (Caillol et al., 1985; Patey et al., 1986).
The results of SCMF/molecular simulation were in very good
agreement with the exact molecular simulation data obtained
by taking account of the many-body forces. Because the SCMF
was originally derived to be used with integral equation the-
ories and molecular simulation, only the energy term was
derived. In this article, the free energy term is derived and
the SCMF is incorporated into the equation of state. A com-
parison with molecular simulation data is also given to phase
coexistence, energy and effective dipole moment. Moreover,
the SCMF is extended to mixtures and applied to simplified
statistical association fluid theory (Fu and Sandler, 1995) to
study real mixtures.

2.  Self-consistent  mean  field  theory

As previously indicated, the SCMF theory approximates
the many  body polarization interactions with an effec-
tive pairwise-additive interaction. In particular, the theory
replaces all the instantaneous dipole moments with an
effective permanent dipole moment (�e) by ignoring the fluc-
tuations in the local electric field. The polarizable medium is
characterized by the average total molecular dipole moment
( �̄) and renormalized polarizability ( ¯̨ ) in the same way that
permanent dipole moment (�) and polarizability (˛) character-
ize a non-polarizable system. The values describing the effec-
tive system (�e, ¯̨  and �̄) are determined to be self-consistent
with a given dipole moment and polarizability by solving the
following system of equations (Carnie and Patey, 1982):

�̄ = � + C( �̄)� · ¯̨  (2.1)

¯̨  =  ̨ + C( �̄)  ̨ · ¯̨  (2.2)

�2
e = �̄2 + 3 ¯̨kT (2.3)

where k, N and T are Boltzmann constant, number of particles
and temperature. C( �̄) is a scalar dependent function related
to the energy of the effective system:

C( �̄) = 2〈UDD〉e

�2
e N

− 〈UDQ 〉e

�e�̄N
− 〈UDO〉e

�e�̄N
= 〈UID〉e

�e�̄N
(2.4)

where the energy superscripts D, Q, O and I denote the dipolar,
quadrupolar, octopolar and ionic contributions, respectively.

The total average energy of the polarizable system is given
by (Carnie and Patey, 1982; Caillol et al., 1985):

〈U〉 = 〈ULJ〉e + 〈UQQ 〉e + � �̄

�2
e

〈UDD〉e + (� + �̄)
2�e

〈UDQ 〉e

+ + (� + �̄)
2�e

〈UDO〉e + (� + �̄)
2�e

〈UID〉e (2.5)

Hence, the total average energy of a polarizable system
is determined by obtaining �e, �̄ and the effective ener-
gies by solving simultaneously Eqs. (2.1)–(2.5). The effective
energies are determined from any suitable non-polarizable
multipole model. However, the solution procedure requires
a replacement of the permanent dipole moment in the non-
polarizable multipole model by the obtained effective dipole
moment without any modification in the non-polarizable
model. It should be noted that each term of the 3rd–6th
terms on the right hand side of Eq. (2.5) consists of two
energy contributions; namely, the effective energy and the
self-consistent energy. The self-consistent energy describes
the energy required to charge up the molecule having a perma-
nent dipole moment and polarizability up to the polarizable
state characterized by the average total molecular dipole
moment and renormalized polarizability.

3.  The  free  energy  of  the  SCMF

To facilitate the application of the SCMF theory to an equation
of state, it is essential to derive a general Helmholtz free energy
term for the polarizable system in the NVT ensemble. Consider
a polarizable system where the particles could have dipole,
quadrupole, octupole and/or ions. The Helmholtz free energy
of the polarizable system (polz) could be decomposed into an
effective Helmholtz free energy term (Ae) and a self-consistent
Helmholtz free energy term (Aself) as follows:

Apolz

NkT
= Ae

NkT
+ Aself

NkT
(3.1)

The effective Helmholtz free energy is obtained from the
non-polarizable model but with the replacement of the perma-
nent dipole moment by the effective one. The self-consistent
Helmholtz free energy, on the other hand, could be derived by
starting from Eq. (2.5). As indicated previously, the energy of
the polarizable system in Eq. (2.5) contains both the effective
and the self-consistent contributions. Therefore, it is possible
to obtain the self-consistent energy by deducting the effective
term from Eq. (2.5). For instance, the self-consistent energy of
the dipolar contribution is given by:

〈UDD〉self = � �̄

�2
e

〈UDD〉e − 〈UDD〉e (3.2)

It should be noted that the first term on the right hand side is a
contribution of both the self-consistent and effective energies
of the polarizable dipole–dipole term. The effective energy is
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