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a b s t r a c t

Trunk muscle electromyography (EMG) is often contaminated by the electrocardiogram (ECG), which
hampers data analysis and potentially yields misinterpretations. We propose the use of independent
component analysis (ICA) for removing ECG contamination and compared it with other procedures pre-
viously developed to decontaminate EMG. To mimic realistic contamination while having uncontami-
nated reference signals, we employed EMG recordings from peripheral muscles with different
activation patterns and superimposed distinct ECG signals that were recorded during rest at conventional
locations for trunk muscle EMG. ICA decomposition was performed with and without a separately col-
lected ECG signal as part of the data set and contaminated ICA modes representing ECG were identified
automatically. Root mean squared relative errors and correlations between the linear envelopes of
uncontaminated and contaminated EMG were calculated to assess filtering effects on EMG amplitude.
Changes in spectral content were quantified via mean power frequencies. ICA-based filtering largely pre-
served the EMG’s spectral content. Performance on amplitude measures was especially successful when a
separate ECG recording was included. That is, the ICA-based filtering can produce excellent results when
EMG and ECG are indeed statistically independent and when mode selection is flexibly adjusted to the
data set under study.

� 2012 Elsevier Ltd.

1. Introduction

Trunk muscle electromyography (EMG) appears very suitable to
study the activity of abdominal and back muscles, e.g., during
postural control. The frequency content of trunk muscle EMG
signals may provide information on fatigue development in these
muscles. Unfortunately, trunk muscle EMG recordings are often
contaminated by the electrocardiogram (ECG), which can hamper
analysis (Butler et al., 2009) and may result in misinterpretations.

In trunk EMG recordings the heart rate can often be determined
by mere visual inspection. Nonetheless it is difficult to remove the
contamination algorithmically because of the ECG’s complicated
waveform, which is accompanied by a broad-band spectral distri-
bution. This distribution covers many higher harmonics character-
izing the ECG but also reflects the transient nature of the heart rate,
which causes peaks at harmonics to broaden substantially. As a
consequence, the ECG spectrum typically overlaps the spectral dis-
tribution of the EMG and disentangling the two forms a challenge.

ECG removal procedures used to date include high-pass filtering
(HPF), usually employing finite impulse response or Butterworth
filters with a cut-off frequency of about 30 Hz (Redfern et al.,
1993; Drake and Callaghan, 2006). The overlap of ECG and EMG
frequency content, however, causes such high-pass filtering (or
other types of frequency filters like consecutive notch filters) to al-
ter the frequency content of the EMG, affecting outcome measures
like mean frequency and mean amplitude. We note that HPF-
effects on amplitude can – in part – be compensated via proper
normalization, assuming that the frequency distribution scales
constantly over activation levels. Still, this is problematic in studies
involving muscle fatigue or when measuring patients who cannot
perform maximal voluntary contractions.

ECG contamination in EMG may also be removed via template
matching approaches exploiting archetypical ECG waveforms.
Unfortunately, the shape of the ECG waveforms strongly depends
on electrode location, which limits success of conventional tem-
plate detection. To avoid the need for generic archetypes, filter-
ing by adaptive sampling (FAS) has been suggested (Aminian
et al., 1988; Marque et al., 2005). If ECG is recognizable and
can be isolated as individual waveform using a single epoch, it
can be subtracted from the contaminated signal, resulting in a
‘clean’ EMG signal. This procedure has the potential advantage
of leaving the spectral content of the actual EMG largely
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unaffected, but the proper identification of ECG in EMG signals
remains rather difficult, if at all feasible. Aminian and colleagues
(1988) recommended recurrent application of a modified turning
point algorithm to distinguish between (fast fluctuations in)
EMG and (slower) ECG samples, in combination with a reference
amplitude to detect R-peaks. Although this procedure can track
changes in heartbeat over time, peak removal is limited by
recurrent application of the modified turning point algorithm,
since the highest peaks will be discarded.

To improve ECG removal from EMG recordings, Hof (2009) sug-
gested to record a separate ECG signal simultaneously with the
EMG recordings. By this, for each electrode location, a separate
ECG template can be constructed based on the impulse responses
to the ECG channel, which are fitted to a resting EMG recording.
In fact, this procedure requires a simultaneous ECG recording and
a measurement with minimal EMG activity of the trunk muscles. If
these supplementary recordings are available, Hof’s approach ap-
pears promising, though to our best knowledge the procedure
has not been thoroughly evaluated, yet.

Here we advocate the use of adaptive filters based on multivar-
iate assessments of EMG. This method is not new and found fre-
quent application in particularly in the neurosciences, e.g., for
artifact removal in the electro-encephalogram (EEG). EEG is often
contaminated by various confounding signals, predominantly by
eye-blinks. Capitalizing on the independence of EEG and eye-blinks
and, by the same token, exploiting the multivariate nature of EEG,
Makeig and colleagues (1996) suggested the use of independent
component analysis (ICA). ICA decomposes a set of time series into
a set of statistically independent or uncorrelated modes (‘source
signals’). This procedure is very similar to a principal component
analysis (PCA) with the addition that the simple singular value
decomposition of the covariance matrix in PCA is replaced by an
optimization of the source signals’ covariance and kurtosis.

We generally assume that the contaminating signal (here ECG)
can in first approximation (1) be considered as merely superim-
posed onto the signal under study (here EMG) and (2) is indepen-
dent thereof. For this case we expect ICA to result in subsets of
modes that only contain contaminations and – more importantly
– subsets of uncontaminated modes. A recent study indeed exam-
ined ICA-based ECG removal on a simulated data set of ECG-con-
taminated EMG signals (Mak et al., 2010). Results were
promising, but about 25% of all ICA modes were identified as
ECG-contaminated. Most probably this resulted in loss of EMG
but, unfortunately, EMG amplitude or frequency outcome mea-
sures have not been reported. Also, the suggested procedure relied
on a peak-detection algorithm used to identify ECG in the ICA
modes, which limits the general applicability to EMG with low
amplitude. In the present study we build on these early ideas
and examined automatic ICA-based removal of ECG from EMG
recordings by comparing it with the more traditional HPF and
FAS as well as the aforementioned method by Hof (2009). To assess
quantitative differences in both ECG removal and EMG preserva-
tion, we used artificially contaminated EMG recordings from
peripheral muscles with different patterns and levels of activation.
The ECG used for artificial contamination was recorded at 15 dif-
ferent electrode locations often used for trunk muscle EMG record-
ings, in order to mimic actual differences in ECG waveforms in
trunk muscle EMG. ICA-based filtering was realized with and with-
out the use of a separate ECG recording. We hypothesized that the
methods requiring a separate ECG recording are in general superior
to methods without the use of such a reference. From the latter, we
further hypothesized ICA-based filtering to be more successful
than both alternatives in removing ECG, because it is largely inde-
pendent of signal-to-noise ratio (which is known to limit template
matching) and because of its merely subtle effects on frequency
content of the signals.

2. Methods

2.1. Data collection and pre-processing

2.1.1. Generating artificially ECG-contaminated EMG
Surface EMG activity of 16 peripheral muscles in the upper and

lower extremities was recorded in a single subject (female, age 26,
BMI 22) using a conventional, bipolar montage (Porti 17, TMS, En-
schede, The Netherlands; 22 bits AD conversion after 20� amplifi-
cation, input impedance >1012 X, CMRR >90 dB, 1000 samples/s,
with online 10–400 Hz band-pass filtering). A single subject design
(as also used by (Drake and Callaghan (2006)) was considered suit-
able for this methodological study, since signal characteristics of
ECG and EMG are similar between subjects.

Electrodes (Ag/AgCl, inter-electrode distance 25 mm) were
placed above selected arm and leg muscles according to SENIAM
recommendations (Hermens et al., 2000); see Table 1, left column.
During these EMG recordings the subject performed several tasks
(30 s each) requiring different levels and patterns of activation;
see Table 2 for an overview. Maximal voluntary contractions
(MVCs) were performed against the experimenter’s manual resis-
tance for each muscle.

ECG was recorded during rest (lying supine) at 16 locations
commonly used for recordings of trunk muscle activity (four back
and four abdominal muscles bilaterally, see Table 1, right column;
more details on electrode locations can be found in Willigenburg
et al. (2010)). Visual inspection revealed only minimal EMG
activity, implying that apart from some background noise largely
isolated ECG signals were recorded. From here-on we therefore
refer to these signals as ECG. Note that these 16 ECG channels
differed from each other in that each signal represented a
realistic ECG contamination at a specific trunk muscle. An occa-
sional 50-Hz interference was removed using a conventional
off-line notch filter (4th order bi-directional Butterworth, 49.5–
50.5 Hz).

Table 1
Muscles from which EMG was recorded; odd and even channels refer to right and left
muscles, respectively.

Channel Limb EMG recordings
during five tasks

ECG recordings at trunk muscle
electrode locations during rest

1–2 m. rectus femoris m. longissimus thoracis
3–4 m. vastus medialis m. iliocostalis thoracis
5–6 m. biceps femoris m. iliocostalis lumbalis
7–8 m. gastrocnemius lateralis m. longissimus lumbalis
9–10 m. gastrocnemius medialis m. rectus abdominis
11–12 m. tibialis anterior m. obliquus externus anterior
13–14 m. biceps brachii m. obliquus internus anterior
15–16 m. brachioradialis m. obliquus externus lateralis

Table 2
Experimental tasks during which EMG of peripheral muscles was recorded.

Task Activity

Lower extremity Upper extremity

1 Upright stance 90� elbow flexion
2 Upright (15 s) to squatted (15 s)

stance
Arms hanging down

3 Squatted (15 s) to toe (15 s) stance Arms forward (15 s) to upward
(15 s)

4 Rhythmic stepping 90� elbow flexion, arm sway
5 Various (randomly chosen)

activities
Various (randomly chosen)
activities
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