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Process design is performed using deterministic values of input variables. However, these

input variables may have uncertainties that can lead the designed process to unwanted

conditions. This paper presents a methodology for determining critical variables to avoid

unwanted responses in the designed process. The methodology proposed here consists

of  three stages: (1) deterministic process design, (2) elimination of non-influential input

variables via the global sensitivity analysis method of Sobol’, and (3) determination and

regionalization of critical variables with Monte Carlo Filtering. The proposed methodology

was  applied to the design of a mineral concentration circuit and to the design of a desalina-

tion plant. The results show that the methodology could be helpful in analyzing whether a

deterministic design works adequately under uncertainties, identifying critical variables in

large  models, and regionalizing operating conditions and design variables.

© 2015 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1.  Introduction

The conceptual process design is an important stage because
decisions made at this stage will affect future development
stages in the life of a process. There are several methodologies
for the design of processes, which are usually classified based
on heuristics, optimization, and hybrid. Several reviews of the
state of the art of the subject are available, and the reader
can see the works of Li and Kraslawski (2004), Nikolopoulou
and Ierapetritou (2012), and Sharifzadeh (2013a) for examples.
The design is usually performed using deterministic variables
considering mean values and expected values of the input
variables.

However, the design of these processes may depend on sev-
eral input variables that present uncertainty. This uncertainty
can be epistemic (for lack of knowledge of the variable val-
ues under the design conditions) or stochastic (the variable
presents random behavior). For example, the kinetic constants
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in flotation processes depend on the design conditions (e.g.,
equipment size, particle size) and its value must be deter-
mined experimentally. Then, it is not possible to know the
exact value of the kinetic constants if the equipment size and
particle size are variables in the conceptual process design
problem. In contrast, product price, product demand, feed
composition, and feed temperature are examples of stochastic
uncertainty in the design of processes. Here, the definition of
the input variables is wide, corresponding to any type of input
variable that presents uncertainty. This uncertainty can be
epistemic or stochastic. These variables can be related to flexi-
bility, resiliency, or operability issues. However, without losing
this generalization, the examples in this paper are related
to flexibility issues (Grossmann et al., 2014; Sharifzadeh,
2013b). Several approaches have been proposed to formulate
and solve optimization models with uncertain parameters
(see Sahinidis, 2004). Particularly, two-stage stochastic pro-
graming is likely the most widespread approach to address
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optimization under uncertainty (Liu and Sahinidis, 1996). Two-
stage stochastic formulations involve two types of decisions:
first-stage decisions that must be made before the realiza-
tion of the uncertain parameters, and second-stage decisions
that are taken once the uncertainty is exposed. The goal is
to choose the first-stage variables in a way that the expected
value of the objective function is maximized or minimized
over all the scenarios. However, these problems can be very
challenging for process design because there may be several
uncertain variables (and therefore a large number of scenarios)
and the models can be complex MINLP. Robust optimization is
an alternative approach to handle uncertainties that depend
on the use of chance constraints. Herein, the original robust
stochastic model is typically substituted by a deterministic
formulation with several equations representing the proba-
bilistic statements expressed through chance constraints (Li
et al., 2008). The main disadvantage of this technique is that
it does not include second-stage variables, that is, it does not
quantify the effect of each uncertain outcome when it mate-
rializes. Fuzzy programing (Zimmermann, 1991) is another
approach to address uncertainties, and it consists of model-
ing the random parameters as fuzzy numbers and treating
the model constraints as fuzzy sets. However, the represen-
tation of uncertainty using fuzzy sets can be a difficult and
costly task. The use of flexibility and resiliency concepts and
indices has also been applied in the design of chemical pro-
cesses with uncertainty (Grossmann et al., 2014; Pintarič and
Kravanja, 2007).

Lucay et al. (2012) used local sensitivity analysis to identify
critical variables in the design of a mineral concentration pro-
cess to address the epistemic uncertainty of flotation stage
recoveries. They derived explicit equations to identify criti-
cal stages in mineral concentrators. Sepúlveda et al. (2013)
extended the previous work, applying global sensitivity analy-
sis to identify critical stages in flotation circuits. They conclude
that the method of Sobol’ delivers optimal results in the analy-
sis of such circuits. Later, from the identification of the critical
variables, the flotation circuits were improved (Sepúlveda
et al., 2014a).

In this paper, a methodology is proposed to identify the
critical variables of a process to avoid unwanted process out-
put under the uncertainty of the input variables. The proposal
involves Sobol’ and Monte Carlo Filtering (MCF) global sensitiv-
ity methods. While both methods are used to identify critical
variables, the first has the disadvantage of not indicating how
to move into the uncertainty intervals of the critical variables
to avoid bad results. The second, in contrast, identifies regions
based on the critical variables in which the output of the
model has a certain behavior. However, practice has shown
that MCF  exhibits a lack of statistical power for large mod-
els (Saltelli et al., 2004). The proposed methodology consists
of three stages: (1) conceptual process design, (2) elimination
of non-influential input variables based on a ranking built on
the Sobol’ method, and (3) determination and regionalization
of critical variables using MCF.  This methodology is illustrated
by the mineral flotation circuit design and by the conceptual
design of a reverse-osmosis desalination plant.

2.  Methodology  for  determining  critical
variables

As indicated above, the methodology consists of three
stages: (1) conceptual process design, (2) elimination of
non-influential input variables, and (3) determination and

regionalization of critical variables. These stages are described
below:

2.1.  Conceptual  process  design

In the literature, there are a number of procedures for pro-
cess design, and here it is assumed that any procedure can be
used if the results are adequate. For designing mineral con-
centration plants, there are the procedures of Hu et al. (2013)
based on genetic algorithms, Cisternas et al. (2014) based on
mathematical programing, and Sepúlveda et al. (2014b) based
on group contribution, among several others. For the design
of reverse-osmosis desalination plants, there exist graphical
procedures (Evangelista, 1986) and those based on mathe-
matical programing (Sassi and Mujtaba, 2012). The review of
these methods is beyond the scope of this paper; readers inter-
ested in design mineral flotation plants can see the review of
Mendez et al. (2009), and those interested in reverse osmosis
desalination plant design can see the introduction given by
Sassi and Mujtaba (2012).

2.2.  Elimination  of  non-influential  input  variables

As discussed later, MCF works best if the model has fewer
variables with uncertainty. For this reason, in this second
stage, we apply a method of reducing the number of vari-
ables with uncertainty. Based on Sepúlveda et al. (2014a), the
Sobol’ and Morris methods can identify input variables that
most affect the uncertainty of the output variable, and there-
fore both methods can be applied. In this work the Sobol’
method is used. In the Sobol’ (1993) method, the variance of
the model output can be decomposed in terms of increas-
ing dimensions, called partial variances, which represent the
contribution of the inputs (i.e., single inputs, pairs of inputs,
etc.) to the overall uncertainty in the model output. Statistical
estimators of partial variances are available to quantify the
sensitivities of all the inputs and of groups of inputs through
multi-dimensional integrals. The partitioning of the total vari-
ance of the model output V(Y), considering that the model
has the form Y = f (x1, x2, . . .xn),  where Y is a scalar and xi is
a model factor, can be represented by the following equation
(Confalonieri et al., 2010):

V (Y) =
∑n

i=1
Di +

∑n

i≤j≤n
Dij + . . . +

∑n

i≤...n
Di...n (1)

where, Di represents the first-order effect for each fac-
tor xi (Di = V [E (Y|xi)]) and Dij

(
Dij = V

[
E
(

Y|xi, xj

)]
− Di − Dj

)
to D1. . .n the interactions among n factors. The variance of
the conditional expectation (V [E (Y|xi)]) is sometime called the
main effect and is used as an indicator of the significance of
xi.

The calculation of all partial variances of input groups has
a high computational cost, which is the reason Homma and
Saltelli (1996) introduced the concept of a total sensitivity
index. The total sensitivity index indicates the overall effect
of a given input by considering all the possible interactions of
the respective input with all the other inputs.

In this paper, the Sobol’ method and the improved formulas
of Jansen (1999) and Saltelli et al. (2010) for the Sobol’ method
were applied. The Sobol’–Jansen method allows for the
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