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a  b  s  t  r  a  c  t

The goal of this paper is to relate eigenvalue spectrum issued from POD to energy density

spectrum. In the first part of this paper, eigenvalue spectrum issued from POD is plotted.

Reconstruction of kinetic energy (KE) and dissipation rate of KE are discussed. 1D energy

density spectrum is plotted for complete fluctuating velocity field. Different projections of

fluctuating velocities on selected groups of eigenmodes are discussed. In the second part of

this  paper, 1D longitudinal EDS is reconstructed by the way of information entropy (Ogawa,

2007),  as a new perspective. The maximum entropy method (MEM) is used to derive the

energy density spectrum (versus wave number) in the inertial range of a turbulent flow.

©  2015 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1.  Introduction

P.I.V. (Particle Image  Velocimetry) technique is applied in
the field of hydrodynamics in a mixing tank (Bugay et al.,
2002; Escudié and Liné, 2003; Huchet et al., 2009; Gabelle
et al., 2013). Recently, P.O.D. (Proper Orthogonal Decompo-
sition, Berkooz et al., 1993) technique was used to extract
more  and more  information from such huge source of experi-
mental data (Moreau and Liné, 2006; Doulgerakis’s PhD, 2010;
Doulgerakis et al., 2011; Liné et al., 2013). POD is an efficient
technique to process instantaneous velocity fields, enabling
to reconstruct the velocity in terms of summation of modes,
each mode contributing to the total kinetic energy. P.O.D. is
thus a modal decomposition of instantaneous velocity fields.
Modes can be derived from the Fredholm eigenvalue inte-
gral equation, adapted by Sirovich (1987). Knight and Sirovich
(1990) have shown that the POD eigenvalue spectrum (plot of
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eigenvalues versus mode number I) exhibit I−11/9 trend char-
acteristic of the inertial subrange of turbulence. The goal of
this paper is to relate eigenvalue spectrum issued from POD
to energy density spectrum. In the first part, energy density
spectrum will be reconstructed from selected modes issued
from POD. In the second part of the paper, the energy den-
sity spectrum (or probability density functions PDF of velocity
fluctuations) will be derived in turbulent flow from “entropy
information” (Arimitsu and Arimitsu, 2002; Verkley and Lynch,
2009).

In this introduction, the “information theory” is shortly
presented and Maximum Entropy Method (MEM)  is reminded.
Secondly, the approach developed by Ogawa (2007) is reviewed.
Thus, an expression of the total energy density per unit wave
number � is derived. This approach will be revisited by cou-
pling information theory to information issued from POD
analysis.
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1.1.  Eigen  value  spectrum  versus  mode  number

Referring to Proper Orthogonal Decomposition, Knight and
Sirovich (1990) analyzed the eigenvalue spectrum of the two-
point velocity correlation tensor. The eigenvalue spectrum is
plotted versus mode number I. Recall that the eigenvalue asso-
ciated to Ith mode represents the kinetic energy allocated to
this mode. Knight and Sirovich have shown that, in the iner-
tial range of turbulence, the eigenvalues were a generalization
of the energy density spectrum. Thus, they demonstrated that
the Ith eigenvalue �(I) can be related to the Ith mode number by
a power law �(I) ∝ I−11/9. Such a behavior has been observed by
many experimental and numerical works (De Angelis et al.,
2003; Ducci et al., 2007; Doulgerakis, 2010; Housiadas et al.,
2005; Handler et al., 2006; Piponniau et al., 2012; Kefayati and
Poepping, 2013; Calaf et al., 2013 among others). In addition,
Knight and Sirovich related the Ith wave  number �I to the Ith
eigen mode by the relation I ∝ �I

3. This trend was confirmed by
Liné et al. (2013) from derivation of length scales associated to
each eigenvector and more  recently by Tang et al. (2014). In
the first part of this paper, the eigenvalue spectrum will be
presented and discussed. Another way to reconstruct energy
density spectrum consisting in applying information entropy
to velocity data will be develop in the second part.

1.2.  Information  theory

Information theory has been developed to quantify the
amount of information that is contained in the observation
of an event having a probability p (Beck, 2009). The average
amount of information, classically noted H(p), is obtained as
follows:

H(p) =
N∑

i=1

pi log
(

1
pi

)
(1)

where the variable H(p) is called “information entropy”. In
other words, the “information entropy” of a probability distri-
bution is the value of the amount of information of the whole
distribution.

1.3.  Maximum  entropy  method

The maximum entropy method is based on the assumption
that the probability distribution that maximizes the “infor-
mation entropy” is the most expected to occur (Pope, 1979;
Martyushev and Seleznev, 2006). This procedure may be ful-
filled as follow: let’s look for a probability distribution p(x)
that maximizes the “information entropy” H(p) given a finite
number of moments (Bandyopadhyay et al., 2005). By introduc-
ing Lagrangian multipliers �m, one can define the Lagrangian
functional F:

F = H +
∑

�m

[∫
xmp(x)dx − �m

]
(2)

The maximum entropy method can be understood so as to
maximize the Lagrangian function given by Eq. (2).

1.4.  Application  to  turbulent  flow

The book of Ogawa (2007) has been dedicated to the applica-
tion of maximum entropy method to chemical engineering in
general and turbulent phenomena in particular. In this book,

it has been shown (page 14) that if a variable x takes positive
values and if its average value (first moment) is fixed as A, thus
one can write the two first moments of the distribution as:

∞∫
0

p(x)dx = 1

∞∫
0

xp(x)dx = A (3)

In this case, the functional maximum (Eq. (2)) can be
expressed by:

∂

∂p

∫
[−p(x) log (p(x))] dx + �1

∂

∂p

[∫
p(x)dx − 1

]

+ �2
∂

∂p

[∫
xp(x)dx − A

]
= 0 (4)

After calculation (Ogawa book, page 16), it corresponds to a
maximum value of the “information entropy” which is equal
to:

Hmax = log(eA) (5)

and the probability distribution that maximizes the “informa-
tion entropy” is derived as:

p(x) = 1
A

exp
(

− x

A

)
(6)

Ogawa (2007) applied the maximum entropy method to
derive energy density spectrum of turbulent flows. Follow-
ing Ogawa, “the ESD is discussed base on the uncertainty
regarding the wave  number of fluctuation that is selected”
(Ogawa book, p 102). Consider that the ESD of the Ith-eddy
group is probability density function p. This probability is thus
defined as:

pI = EI(�)

u′2
I

(7)

where � is the wave  number, u′2
I is the turbulent kinetic energy

of the Ith-eddy group and EI(�) is the energy density per unit
scalar wave  number and associated to Ith-eddy group. Follow-
ing MEM (Eq. (6)), the probability distribution that maximizes
the “information entropy” as well as the total energy density
per unit wave number � are given:

EI(�)

u′2
I

= 1
�I

exp
(

− �

�I

)
E(�)

u′2
=

n∑
i=1

PI

�I
exp
(

− �

�I

)
(8)

where PI =
(

u′2
I /u′2

)
. In his book (Ogawa book, page 102),

Ogawa proposed to relate the eddy scales �i and the associated
velocity variance Pi as

�I+1

�I
= 1

˛
and

PI+1

PI
= u′2

I+1

u′2
I

= 1
ˇ

(9)

The final expression of the total energy density is (Ogawa
book, page 103):

E(�)

u′2
= P1

�1
∑n

i=1 (1/ˇ)
i−1

n∑
I=1

[(
˛

ˇ

)i−1
exp
(

−˛I−1 �

�1

)]
(10)
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