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Abstract
Regression models are widely used for addressing scientific questions
of interest regarding the associations among a set of variables. In
particular, linear regression models describe how part of the natural
individual-to-individual variation in a continuous response variable
can be explained by one or more explanatory variables. In this article
we provide a general overview of regression concepts, emphasizing
the two most common goals of regression analysis: explanation and
prediction. We discuss various aspects of interpretation of regression
coefficients. We also consider the notions of confounding and interac-
tion within regression analyses. Finally, we consider important gener-
alizations of linear regression to handle the case where the response

variable is binary (logistic regression) and also settings with correlated
responses (e.g., repeated measurements on individuals over time). We
conclude by discussing how linear and logistic regression are special
cases of a broad and useful collection of regression models known as
generalized linear models.
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Introduction

In many experiments as well as observational studies, multiple

variables are measured on individuals to address specific scien-

tific questions of interest regarding their association. For

example, we may have some histopathological variable of in-

terest, say a quantitative measure of brain densities of senile

plaques (number per square millimeter), that varies naturally

from one Alzheimer’s patient to another. The question of scien-

tific interest might be whether some of that variability can be

explained by other variables, such as, for example, age, gender,

years of education, and scores on a measure of episodic memory

such as the Rey Auditory Verbal Learning Test (RAVLT).1,2 In

this example, the density of senile plaques is referred to as the

response variable and age, gender, years of education and RAVLT

scores are referred to as explanatory variables; the latter vari-

ables potentially explain some of the variation in the former.

Scientific questions of this nature can be answered by analysing

the data using regression models.

Regression models are widely used across a range of scientific

applications and provide a very general and versatile approach

for describing the dependence of a response variable on a set of

explanatory variables. Broadly speaking, we can distinguish two

main reasons for the use of regression models. The first reason is

for the purpose of explanation. That is, the regression model is

used to estimate the effect of an explanatory variable on the

response, while controlling or adjusting for the effects of many

other variables that are included in the model. In many instances,

the inclusion of the latter variables is to ensure that we obtain an

estimate of the unconfounded effect of the explanatory variable

of interest. For example, we may be interested in estimating the

effect of a measure of episodic memory (e.g., RAVLT scores) on

brain densities of senile plaques in Alzheimer’s patients. How-

ever, the apparent association may well be due to the fact that

patients in our sample with low scores on the RAVLT also

happen to be older and with less years of education. So, in using

a regression model for explanatory purposes, the regression co-

efficients yield an estimate of the effect of the explanatory vari-

able of interest (e.g., episodic memory), controlling for any other

factors that have been included in the regression model (e.g.,

age, years of education), thereby enhancing our understanding of

the true relationship between the response and explanatory

variable. Although this type of use of a regression model cannot

by itself establish a causal explanation of the relationship be-

tween the response and an explanatory variable (the latter would

be justified if, for example, individuals were randomized to levels

of the explanatory variable), it may often be used to at least

provide partial support of explanations that are potentially

causal. The second main reason to use a regression model is for

the purpose of prediction, e.g., prediction of the unobserved re-

sponses for new individuals or prediction of future values of the

response on the basis of present values of the explanatory vari-

ables (the latter is referred to as forecasting). When used for

prediction, the regression model provides an estimate of the ex-

pected or predicted values of the response as a function of the

explanatory variables (we note in passing that the terms

“explanatory variables” and “predictors” are often used inter-

changeably when discussing regression, regardless of the reason

for its use). In the context of prediction, a regression model that

is well calibrated should yield predicted values of the response

that closely agree with the actual or realized values of the

response. For example, there may be a gold-standard histopath-

ologic measure of interest, e.g., brain densities of senile plaques

in Alzheimer’s patients, that can only be obtained post-mortem;

the goal of the study is to find a set of biomarkers (e.g., bio-

markers in saliva, blood, or cerebrospinal fluid) predictive of this

post-mortem response variable that can be routinely assessed. In

this example, the goal is not to obtain an estimate of the un-

confounded effect of each of the biomarkers on the response

variable; there is relatively little interest in interpreting their ef-

fects on the response variable. Instead, the main emphasis is on

obtaining predictions of the response, as a function of the bio-

markers, that closely agree with the actual values of the response

variable. It is worth mentioning that these two different reasons

for using a regression model, explanation and prediction, can

have important implications for the decision about what vari-

ables to include and exclude from the regression model; how-

ever, that is a topic beyond the scope of this article.

Finally, our use of the term “regression model” in this article

is not strictly limited to the standard linear regression model for a

continuous response variable. Instead, we use this term more

broadly to refer to any model that describes the dependence of

the mean of a response variable on a set of explanatory variables

in terms of some form of regression equation. We will begin our

discussion of regression models with the simplest case: the linear

Garrett M Fitzmaurice Sc.D Professor of Biostatistics and Director of
the Laboratory for Psychiatric Biostatistics, McLean Hospital,
Belmont, MA; Department of Biostatistics, Harvard T.H. Chan School
of Public Health, Boston, MA, USA. Conflict of interest: none.

MINI-SYMPOSIUM: MEDICAL STATISTICS

DIAGNOSTIC HISTOPATHOLOGY 22:7 271 � 2016 Published by Elsevier Ltd.

http://dx.doi.org/10.1016/j.mpdhp.2016.06.004


regression model for a continuous response variable; later, we

briefly consider some of the many possible generalizations. With

the exception of continuous responses, binary data taking on

only two values (perhaps denoting absence or presence of dis-

ease) are by far the most commonly encountered data type in

medical studies. For a binary response variable, linear logistic

regression is widely used in many applications. Another impor-

tant generalization is to observations that cannot be assumed to

be statistically independent of one another, that is, regression

models for correlated responses. Correlated responses might

arise when multiple measurements are obtained on a single

tumour from a patient or when repeated measurements are ob-

tained over time. In later sections of this article we consider both

kinds of generalizations of the standard linear regression model.

Linear regression

Linear regression describes how the mean values of a response

variable (denoted by Y ) vary as a linear function of a set of

explanatory variables. For ease of exposition, we will first

consider the case where there is only a single explanatory vari-

able, denoted by X; when restricted to a single explanatory var-

iable the model is often referred to as simple linear regression.

The generalizations to more than one explanatory variable will

be considered later.

Assuming there are observations on n individuals (i ¼ 1,.,n)

in the study, the simple linear regression model is

Yi ¼ b0 þ b1Xi þ ei;

where the b’s are the regression coefficients and ei is a random

component that is assumed to be independently normally

distributed with zero mean and variance s2. The ei term in the

model represents natural variation of Yi among individuals

around the mean (or expected value) of the response in the

population,

EðYiÞ ¼ b0 þ b1Xi:

The regression coefficients, b0 and b1, express the linear depen-

dence of the mean response on the explanatory variable. Spe-

cifically, the intercept b0 has interpretation as the mean value of

the response variable when the explanatory variable X is equal to

zero. The slope, b1, is usually the parameter of most interest and

has interpretation as the change in the mean of Y for a single unit

increase in X. For the special case where the explanatory variable

X is dichotomous, taking values of 0 and 1, the regression slope

b1 has a simple interpretation as the difference in the mean of Y

when X ¼ 1 versus X ¼ 0.

When there is more than a single explanatory variable, an

important generalization of the model is referred to as multiple

linear regression. Although it is relatively straightforward to

assess how the response variable is associated with each of the

explanatory variables, when taken one at a time, in a simple

linear regression, this is usually not satisfactory for the following

two reasons. First, a series of separate analyses does not permit

an assessment of how well the combined set of explanatory

variables predict the response variable. Second, by failing to

consider the simultaneous effects of the explanatory variables,

we cannot estimate the unconfounded effect of any particular

explanatory variable. Multiple linear regression overcomes both

of these limitations by simultaneously estimating the effects of

the set of explanatory variables on the response. In doing so, we

can determine how closely the predicted values, based on the

entire set of explanatory variables, agree with the actual values of

the response; in addition, we can discern the effect of any

particular explanatory variable, controlling or adjusting for the

other variables included in the model.

Assuming there are p explanatory variables, say X1, ., Xp,

obtained on n individuals (i ¼ 1, .,n), the multiple linear

regression model is

Yi ¼ b0 þ b1X1i þ b2X2i þ.þ bpXpi þ ei;

where the ei is a random component, assumed to be indepen-

dently normally distributed with zero mean and variance s2,

representing natural variation of Yi around the mean of the

response,

EðYiÞ ¼ b0 þ b1X1i þ b2X2i þ.þ bpXpi:

The b’s express the dependence of the response variable on the

explanatory variables. The interpretation of any particular

regression coefficient, say the slope b1, is in terms of the change

in the mean of Y for a single unit increase in X1, while the

remaining explanatory variables X2, ., Xp are held constant.

That is, the interpretation of b1 can best be understood as a hy-

pothetical comparison of two groups of individuals that differ by

one unit in X1 but have the same values for all of the other

explanatory variables, X2, ., Xp. The intercept, b0, now has

interpretation as the mean value of the response variable when

all of the explanatory variables assume the value zero, i.e., when

X1 ¼ X2 ¼ . ¼ Xp ¼ 0.

Before we discuss some additional aspects of the model it is

worth emphasizing that the term “linear” in multiple linear

regression has a very precise meaning and refers to the fact that

all models for the mean response are linear in the regression

parameters (coefficients). That is, the right hand side of the

regression equation can always be constructed by adding

together terms that are either a constant (say b0) or the product

of a regression coefficient and an explanatory variable (e.g., b1
X1i). For example, the following three models for the dependence

of the mean response on X,

EðYiÞ ¼ b0 þ b1 Xi;

EðYiÞ ¼ b0 þ b1 logðXiÞ;

EðYiÞ ¼ b0 þ b1Xi þ b2X
2
i ;

are all cases where the mean is said to be linear in the regression

parameters, even if the latter two models are non-linear in the

explanatory variable X whereas the first model defines a straight

line (or linear) relationship. It becomes more transparent that, for

example, the third model is linear in the regression parameters

when the model is re-written as

EðYiÞ ¼ b0 þ b1X1i þ b2X2i

where X1i ¼ Xi; X2i ¼ X2
i : Thus, in linear regression the mean

response can certainly change as a non-linear or curvilinear

MINI-SYMPOSIUM: MEDICAL STATISTICS

DIAGNOSTIC HISTOPATHOLOGY 22:7 272 � 2016 Published by Elsevier Ltd.

http://dx.doi.org/10.1016/j.mpdhp.2016.06.004


Download English Version:

https://daneshyari.com/en/article/6215222

Download Persian Version:

https://daneshyari.com/article/6215222

Daneshyari.com

https://daneshyari.com/en/article/6215222
https://daneshyari.com/article/6215222
https://daneshyari.com

