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Abstract: In this work, the rate of mass transfer from an ensemble of mono-size spherical
Newtonian droplets (free from surfactants) to a Newtonian continuous phase has been numeri-
cally studied at moderate Reynolds and Peclet numbers. A simple spherical cell model (so-called
free surface cell model) has been used to account for inter-drop hydrodynamic interactions.
Extensive numerical results have been obtained to elucidate the effects of the Reynolds
number (Re,), the ratio of internal to external fluid viscosity (k), the volume fraction of the
dispersed phase (¢) and the Schmidt number (Sc) on the local and average Sherwood
number (Sh) over the ranges of conditions: 1 < Re, <200, 0.2 <e< 0.6, 0.1 <k <50 and
1 < Sc < 10 000. It has been observed that the effects of viscosity ratio on the local and average
Sherwood number is less significant for small values of the Peclet number (Pe) for all values of
dispersed phase concentration. As the value of the viscosity ratio increases, the average Sher-
wood number decreases for all values of the droplet concentration and the Reynolds number.
Based on the present numerical results, a simple predictive correlation is proposed which can
be used to estimate the rate of inter-phase mass transfer in a liquid—liquid system in a new appli-
cation. However, it is also appropriate to add here that at higher concentrations, fluid spheres
interact significantly, deform and coalesce. All these effects are neglected in this study. There-
fore, the present results are valid only for dilute to moderate concentration of the dispersed
phase.
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INTRODUCTION applications. In most applications, often one
fluid is dispersed in the form of droplets
The motion of and mass transfer from drops moving in another immiscible fluid which

to viscous liquids is ubiquitous in the chemi- leads to enhancement of the rate of mass
cal, biochemical, and polymer processing transfer between the two phases. Some
industries. In most applications, one encoun- of these applications include, liquid—liquid

ters clusters of drops, the growth or collapse extraction, distillation, gas absorption,
of which are directly influenced by the rate enhanced oil recovery in petroleum industries,
of mass transfer between the two phases. production of polymeric alloys and emulsions
The rate of mass transfer from a single fluid in paint and detergent industries, fermentation
sphere moving in a continuous fluid medium broths, wastewater treatment, and so on
is greatly influenced by the motion inside the (Schramm, 2005). Over the years, extensive
fluid sphere. Experiments have shown that literature has been reported on the motion of
the rate of mass transfer from circulating and mass transfer from single bubbles and
bubbles and drops is much larger than that drops in Newtonian liquids which has been
from non-circulating bubbles and drops due reviewed thoroughly by Clift et al. (1978),
to the effect of internal circulation on the exter- Michaelides (2006) and Chhabra (2006).
nal flow field. It is readily conceded that one Although, the detailed kinematics of such
often encounters ensembles of droplets studies related to single bubbles and drops

rather than a single drop in most industrial provides useful information about the basic
applications. The mass transfer from ensem- underlying physical phenomena, often one
bles of fluid spheres to another immiscible encounters clusters of bubbles and drops in
medium is an idealization of many indus- chemical and processing industries as

trially important chemical and processing mentioned above. Therefore, an adequate
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understanding of the rate of mass transfer from clusters of
drops is a prerequisite to the understanding and rationalizing
the overall efficiency of the contacting equipment. This infor-
mation can be conveniently expressed using dimensionless
parameters such as the Sherwood number, Reynolds
number, Schmidt number, viscosity ratio and the volume frac-
tion of the dispersed phase. Most of the literature on mass
transfer from clusters of drops pertains to the limiting cases
of either zero viscosity ratio (bubbles) or infinite viscosity
ratio (solid spheres) in the creeping flow or in the potential
flow regimes for small and/or large values of Peclet numbers.
Indeed, no prior results are available which relate to mass
transfer from ensembles of drops at moderate Reynolds
and Peclet numbers for intermediate values of the viscosity
ratio and the concentration of the dispersed phase.

From a theoretical standpoint, a mathematical description
of the inter-drop hydrodynamic interactions is also needed,
in addition to the usual conservation equations to model con-
vective transport in these systems. In the literature, two dis-
tinct approaches are available to describe inter-drop
hydrodynamic interactions. In the first approach, the field
equations are solved for specific ordered arrangements
(such as square, triangular, simple cubic, body centered
cubic, face centered cubic, and so on). While this approach
is rigorous, the results naturally depend upon the specific
arrangement and extrapolation to even a slightly different
configuration is not possible (Chhabra, 2006). These results
are frequently expressed in the form of a correction factor
to be applied to the case of a single droplet (Stokes’
expression), which is a strong function of the type of packing
of droplets. For ordered suspensions, this correction is of the
order ¢'/3, whereas for random suspensions, it is of the order
e. While in the dilute limits, both of these are close to each
other, but the two begin to deviate from each other with the
increasing values of . To date this approach, however, has
not only been limited to the zero Reynolds number flow, but
has also been used more extensively for solid spheres and
bubbles and only scantily for droplets. In the second
approach (the so-called cell model), somewhat less rigorous,
the inter-drop interactions are approximated by postulating
the each fluid sphere to be surrounded by a hypothetical con-
centric envelope of the continuous phase. The size of the
hypothetical envelope is chosen such that the volume frac-
tion of the dispersed phase in each cell is equal to the overall
mean volume fraction of the dispersed phase. Thus, the
radius of the hypothetical envelope is related to the size of
the individual droplet via the mean volume fraction of the
system. Qualitatively, this approach is tantamount to impos-
ing an equivalent wall effect, akin to the approach of
Di Felice (1996). Thus, this approach converts the difficult
many body problem into a conceptually simpler problem
involving one droplet confined in a spherical cell. This pro-
vided the impetus to the development of the two commonly
used cell models, namely, the free surface cell model
(Happel, 1958) and the zero vorticity cell model (Kuwabara,
1959). The two models differ only in relation to one of the
boundary conditions at the cell boundary. Happel (1958) pro-
posed the cell boundary to be frictionless (zero shear stress)
thereby emphasizing the non-interacting nature of cells. On
the other hand, Kuwabara (1959) suggested the use of the
zero vorticity condition at the cell boundary. While it is virtually
impossible to offer a sound theoretical justification for either
of these boundary conditions, suffice it to say here that
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owing to extra dissipation in the zero vorticity cell model,
the resulting values of the resistance are larger than those
obtained by using the free surface cell model (Chhabra,
2006). The free surface cell model has been used in this
work. However, it will be appropriate to start with a short
review of the previously available scant literature.

PREVIOUS LITERATURE

Since the pioneering work on the viscous flow past assem-
blages of solid spheres at low Reynolds number by Happel
(1958) and its subsequent extension to ensembles of
bubbles and drops (Gal-Or and Waslo, 1968), the free sur-
face cell model has been extensively used to solve the flow
past clusters of bubbles, drops and particles in Newtonian
fluids and in a wide variety of non-Newtonian fluids. Owing
to the non-linear viscosity equation for non-Newtonian
fluids, the velocity and stress variational principles have
been combined with the cell models to obtain lower and
upper bounds on drag coefficients for swarms of spherical
bubbles rising in generalized Newtonian fluids including
power-law fluids, Carreau model fluids (Gummalam and
Chhabra, 1987; Gummalam et al., 1988; Jarzebski and
Malinowski, 1986, 1987a, b; Manjunath and Chhabra, 1992;
Manjunath et al., 1994; Zhu and Deng, 1994; Zhu, 1995,
2001; Sun and Zhu, 2004). On the other hand, in the limit
of potential flow, Chhabra (1998) extended the work of
Marrucci (1965) to bubble swarms rising in power-law liquids
using the free surface cell model. Similarly, there are a few
studies reported on the flow of Newtonian and other general-
ized Newtonian fluids in fixed and fluidized bed of spheres
(Mohan and Raghuraman, 1976a, b; Kawase and Ulbrecht,
1981a, b; Chhabra and Raman, 1984; Satish and Zhu,
1992; Zhu and Satish, 1992; Jaiswal et al., 1991a, b, 1992,
1993, 1994; Dhole et al., 2004). Gal-Or and Waslo (1968)
were the first to use the free surface cell model to study the
creeping motion of an ensemble of mono-size spherical
drops in an another immiscible incompressible Newtonian
liquid with and without the presence of surfactants. This
approach has also been shown to yield satisfactory predic-
tions of drag on ensembles of drops moving slowly in
power-law and other generalized Newtonian fluids (Jarzebski
and Malinowski, 1986, 1987a, b; Tripathi and Chhabra, 1994;
Zhu and Deng, 1994; Zhu, 2001). Recently, Kishore et al.
(2006) have extended this approach to the Newtonian flow
past ensembles of mono-size spherical Newtonian droplets
at moderate Reynolds numbers up to 500. This model has
also been used successfully to capture the sedimentation
behaviour of two-fluid spheres (Ferreira et al., 2003) and of
composite spheres (Prasad et al, 1990). Most of these
studies concerning the hydrodynamics of multi-particle sys-
tems have been reviewed recently (Chhabra, 2006).

In contrast, there is only a scant literature on mass and heat
transfer from clusters of bubbles, drops and particles, even
in the creeping flow regime at intermediate Peclet numbers.
Pfeffer (1964) combined the free surface cell model and
the thin boundary layer solution to obtain an expression for
the average Sherwood number in the limit of large Peclet
number and the creeping flow of Newtonian liquids through
beds of spherical particles as a function of the fractional void
volume. Kawase and Ulbrecht (1981a, b) combined the thin
concentration boundary layer approximation with the free
surface cell model to elucidate the role of power-law index
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