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linear dynamic processes under serially correlated model error. This work is presented

in the context of the block-oriented exact solution technique (BEST) for multiple
input, multiple output (MIMO) processes proposed by Bhandari and Rollins (2003) for
continuous-time modelling and Rollins and Bhandari (2004) for constrained discrete-time
modelling. This work proposes a model building methodology that is able to separately
determine the steady state, dynamic and noise model structures. It includes a pre-whitening
procedure that is affective for the general class of discrete ARMA(p, ¢) noise (Box and
Jenkins, 1976). The proposed method is demonstrated using a simulated physical system
and a real physical system.

T his article addresses the development of predictive transfer function models for non-
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INTRODUCTION

The noise or error term in a dynamic predictive model if
often serially correlated, i.e., related over time. Therefore,
in these situations, the predictive ability of a model may
be improved from the development and use of an accurate
error term model (ETM). Consequently, the purpose of this
article is to propose a model development method under
autoregressive, moving average (ARMA) noise in the con-
text of the block-oriented method developed by Bhandari
and Rollins (2003) for continuous-time modelling and by
Rollins and Bhandari (2004) for constrained discrete-time
modelling.

In block-oriented modelling, static and dynamic behavior
are represented in separate blocks and arranged in a net-
work connected by variables that are either observed or
unobserved. The two most basic systems are the Hammer-
stein system and the Wiener system which are special cases
of the more general ‘sandwich model’ as discussed in Pear-
son and Ogunnaike (1997). The first block in the Hammer-
stein system is the static gain function which is typically
nonlinear in the inputs. This function then enters the
second block consisting of a linear dynamic transfer func-
tion that ultimately produces the output response. The
Wiener system is similar to the Hammerstein system but
reverses the order of the blocks; the Wiener system is
shown in Figure 1 for a multiple input, multiple output
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(MIMO) system decomposed to g multiple input, single
output (MISO) blocks (see Nells, 2001). The advantages
of the Wiener system over the Hammerstein system are
the following: (1) each input has a separate dynamic
block; and (2) it addresses nonlinear dynamic behaviour
functionally and directly through the blocks connecting
the outputs. Note that, block-oriented sandwich models
are systems with static nonlinear and linear dynamic
blocks arranged in series or parallel connections. Although,
in this article, we primarily focus on the Wiener and Ham-
merstein systems, the methodology that we propose is
applicable to block-oriented modelling in general.

Three common sources of serially correlated noise
include model mismatch, measurement errors and unmea-
sured inputs. These sources combine to give the ETM its
serially correlated nature. Most of the block-oriented
modelling articles found in literature only addresses
independently distributed noise or the so-called ‘white’
noise (e.g., see Gomez and Baeyens, 2004; Hagenblad
and Ljung, 2000; Hagenblad, 1999; Bai, 1998; Kalafatis
et al., 1997; Westwick and Verhaegan, 1996; Greblicki,
1994; Wigren, 1993). This is an insufficient representation
of a ‘real’ system which will inevitably have serially corre-
lated noise due to these error sources. Hence, this article
seeks to overcome this insufficiency with the inclusion of
serially correlated noise in block-oriented modelling.
Figure 2 is a modification of Figure 1 and illustrates the
contributions of unmeasured inputs and measurement
error to the error term.

In our literature search we found only a few studies
involving serially correlated noise [these included the
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Figure 1. A description of the general MIMO Wiener model structure (decomposed to ¢ MISO blocks) withi =1, ...
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There is one set of blocks for each of the g outputs. For each set of blocks, each of the p inputs (u;) passes through a separate linear dynamic block (Gj;) and
produces an intermediate variable, vy, that is an element of the vector v;. Each v; passes through a nonlinear static function fi(v;) and generates the output ;.

works of Cao and Gertler (2004); Zhu (2002); David and
Bastin (2001); Chen and Fassois (1992); and Haist er al.
(1973)] in block-oriented modelling. These studies all
employed methods of simultaneous identification of the
DTFM and ETM structures, rather than separate identifi-
cation of these structures. Also, only a small fraction of
these studies specifically addressed Wiener systems (Zhu,
2002; Chen and Fassois, 1992) or Hammerstein systems
(Haist et al., 1973), and none of them involved the
modelling of physical systems.

Blocking-oriented modelling of physical systems in the
presence of serially correlated noise consists of the determi-
nation of three types of model structures: (1) the static or
steady-state model (SSM) (f;, in Figure 2); (2) the dynamic
deterministic transfer function model (DTFM) (i.e., n in
Figure 2); and (3) the dynamic ETM (e in Figure 2). If
the goal is to determine the DTFM that explains the great-
est amount of variation in the output, then identification of
this model can be quite challenging as it is competing with
the ETM for dynamic predictive power. In view of this, we
make the following comments. First, the information for

p-measured inputs

determining the DTFM comes from the relationships of
the past inputs on the current output. Secondly, the infor-
mation for determining the ETM comes from the relation-
ships of the past outputs on the current output. Furthermore,
past outputs contain a composite of input information that
makes the past values of an output variable more infor-
mation-rich than the past values of any one input variable.
Thus, in many situations, it is possible to obtain high pre-
dictive accuracy without the use of any (or only a few)
input variables. Note that this is the core justification for
autoregressive-integrated moving average (ARIMA) mod-
elling (see Box and Jenkins, 1976) which uses no inputs
and is a dynamic modelling approach based strictly on
past outputs. Therefore, given a transfer function modelling
problem where ARIMA modelling alone can be quite effec-
tive, one could obtain excellent performance irrespective of
the DTFM and its contribution. Consequently, in a dynamic
setting, under serially correlated noise, the modeller must
be careful not to allow the ETM to take predictive power
away from the DTFM when the goal is to obtain the opti-
mal DTFM (i.e., the one with maximum predictive
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Figure 2. A description of a MISO Wiener System with p measured inputs, ¢ unmeasured inputs, and noise. The unmeasured inputs contribute to the
unmeasured process NOise, Eprocess: 1NE Emeasurement €M represents all the measurement errors. The error term, &, is equal t0 &process PIUS Emeasurement-
The output, y, is equal to the exogenous (deterministic) term, 1, plus the error (stochastic) term, & (i.e., the ETM).
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