Common Genetic Variants and Gene-Expression
Changes Associated with Bipolar Disorder Are
Over-Represented in Brain Signaling Pathway Genes
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Background: Despite high heritability, the genetic variants influencing bipolar disorder (BD) susceptibility remain largely unknown. Low
statistical power to detect the small effect-size alleles believed to underlie much of the genetic risk and possible heterogeneity between
cohorts are an increasing concern. Integrative biology approaches might offer advantages over genetic analysis alone by combining
different genomic datasets at the higher level of biological processes rather than the level of specific genetic variants or genes. We employed
this strategy to identify biological processes involved in BD etiopathology.

Method: Three genome-wide association studies and a brain gene-expression study were combined with the Human Protein Reference
Database protein—protein interaction network data. We used bioinformatic analysis to search for biological networks with evidence of
association on the basis of enrichment among both genetic and differential-expression associations with BD.

Results: We identified association with gene networks involved in transmission of nerve impulse, Wnt, and Notch signaling. Three features
stand out among these genes: 1) they localized to the human postsynaptic density, which is crucial for neuronal function; 2) their mouse
knockouts present altered behavioral phenotypes; and 3) some are known targets of the pharmacological treatments for BD.

Conclusions: Genetic and gene-expression associations of BD cluster in discrete regions of the protein—protein interaction network. We
found replicated evidence for association for networks involving several interlinked signaling pathways. These genes are promising
candidates to generate animal models and pharmacological interventions. Our results demonstrate the potential advantage of integrative

biology analyses of BD datasets.
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ness characterized by extremes of mood ranging from mania

to severe depression. Despite a convincing and substantial
genetic contribution to the etiology of the disorder (1), its genetic
and molecular underpinnings remain largely unknown. Its diagno-
sis is based solely on observed clinical features. Individual genome-
wide association studies (GWAS) and linkage studies have high-
lighted several genomic regions, and recently replicated evidence
implicating specific loci have also been reported (2-6). The GWAS
of common genetic variation have reinforced the notion that many
low-risk genetic variants are involved in the etiology of BD. There-

B ipolar disorder (BD) is a chronic and episodic psychiatric ill-
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fore, an important challenge of genetic studies is to devise analyti-
cal strategies to extract biologically relevant associations from
those under the genome-wide significance threshold needed for
multiple testing correction, p = 5 X 108 (7). Currently, large meta-
analyses of GWAS represent the major approach used to increase
power to detect BD risk alleles (8). A potential limitation to these
studies is allelicand locus heterogeneity (i.e., two or more polymor-
phisms within a gene being independently associated, and differ-
ent sets of genes associated in different studies). This has been
reported in different diseases (9-11). There is some evidence to
suggest this might also be true for BD (12), although the extent to
which this occurs in BD or other traits is not yet clear.

Prior knowledge can be used to boost signal-to-noise ratio
and tackle heterogeneity in large-scale genomic experiments
(13,14). Prior information can be used to filter out data, on the
basis that they are unlikely to carry useful information, or to
aggregate them into biologically relevant groups to allow their
signal to stand out above the noise generated by multiple test-
ing. Such an approach can be used with multiple data sources,
and increasing evidence suggests that gene-expression studies
can help prioritize GWAS results (15-17). For example, Zhong et
al. (16) showed that gene-expression changes and disease-sus-
ceptibility alleles cluster in common biological pathways confer-
ring risk for type 2 diabetes.

Analysis of the Wellcome Trust Case Control Consortium
(WTCCC) BD GWAS and its meta-analysis with another GWAS pro-
vided evidence of association within biological processes involved
in the modulation of transcription and cellular activity, including
that of hormone action and adherens junctions (11,18,19).

Here we present an integrative biology analysis aimed to iden-
tify biological processes associated with BD susceptibility. Three
GWAS of BD susceptibility were integrated via a gene-wide analysis
followed by protein—protein interaction network (PPIN) analysis
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and comparison with a brain gene-expression study of BD patients
and matched control subjects. Our integrative approach revealed
convergent evidence for association of genes and biological pro-
cesses with BD susceptibility.

Methods and Materials

Samples and Genotype Data

We reanalyzed GWAS of BD from the Wellcome Trust Case Con-
trol Consortium (20), Cichon et al. (4), and Sklar et al. (21) studies,
which we refer to as WTCCC, Bonn, and Sklar, respectively. We used
individual level genotype and phenotype data from the Bonn study
and summary statistics from each of the other studies. Genotype
data from the Bonn study were quality controlled by the sample
and single nucleotide polymorphism (SNP) missing rate and Hardy-
Weinberg. All BD samples met DSM-IV criteria to establish BD diag-
noses. We also analyzed summary statistics from six GWAS in com-
mon nonpsychiatric disorders reported by the WTCCC (20). See
Supplement 1 for additional method descriptions.

Gene-Based Association

We calculated gene-wide p values with the FORGE software
suite (see Supplement 1 for a detailed description of the software).
We included in our analyses approximately 21,000 protein-coding,
long noncoding RNA and micro RNA genes annotated in Ensembl
v59 (www.ensembl.org) and mapped them to SNPs if the SNP was
within 20 kb of the annotated coordinates. The FORGE software
combined the m association p values within genes with the fixed-
effects Z score method
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where z; are the p values transformed to Z scores with the standard
normal distribution inverse cumulative distribution function (c.d.f.)
and Vg, is the variance of Z,. With the approximation of the multi-
variate-normal distribution
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where w are weights that we set to 1/m and p;; is the correlation
between the z; and z; that we approximate as the correlation be-
tween the SNP; and SNP;, because we only use summary statistics.
We used the simulation-based strategy of Liu et al. (22) to estimate
the significance of the Z, statistics, because it was shown to pro-
vide very good correlation with empirical estimates. Briefly, N gene-
wide statistics for each gene were calculated with sets of m random
Gaussian variables (Z scores) with correlations defined by the cor-
relation matrix between the SNPs (see Liu et al. [22] for details). We
set N to a maximum of 10° simulations or until the value of Z., was
observed 10 times. The gene-wide association test significance is
equal to (R+1)/(N+1), where R is the number of times a statistic =
Z., was observed.

Application of these methods to GWAS has been reported else-
where (23). Before calculating gene p values we applied genomic
control to the SNP p values, if the study A median was >1 (24).

Network Analyses

To identify subnetworks of interacting genes enriched with ge-
netic associations, we used the greedy search introduced by Ideker
et al. (25), which we implemented in a Perl script distributed to-
gether with FORGE. The algorithm starts subnetwork searches from
each node (seed node) in the PPIN. A subnetwork is defined by
sequentially adding the direct neighbors of the nodes of the sub-
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networks (initially only the seed node). We allowed searches to go
to a maximum of five interactions from the seed node and generate
subnetworks of 2 to 500 nodes in size. For each dataset, we calcu-
late the aggregate Z score of the subnetwork (Sy.,) with
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where g; is the Z score of the ith gene in the subnetwork, k is the
number of genes in the subnetwork, and V... is the variance-
covariance matrix of the statistic of the gene that we calculated
with the method described by Luo et al. (23),
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To identify groups of highly overlapping networks, we constructed
a gene-to-network membership matrix filled with values 0 or 1,
depending on whether a gene was part of the network or not. This
matrix was used to calculate correlations between networks and to

perform hierarchical clustering with the Heatplus R package (http://
www.bioconductor.org/packages/2.3/bioc/html/Heatplus.html).

DNA Microarray Analysis

The gene-expression data of dorsolateral prefrontal cortex
(DLPFC) tissue from 61 subjects and orbitofrontal cortex (OFC) tis-
sue from 21 subjects reported by Ryan et al. (26) were downloaded
from the ArrayExpress database (27) under accession number E-
GEOD-5392. Raw intensity values of Affymetrix Human Genome
U133A arrays were normalized with the Robust Multi-Average algo-
rithm (28). Pre-filtering removed transcripts not detected (marked
as “absent” with MAS5 detection call algorithm) in any sample and
were not considered further. The generalized linear model with
covariates was used to assess differential expression for each probe
in each brain region. Covariates were used as in the original report:
for the DLPFC samples we used the generalized linear model with
disease status (control/BD) as the main effect while controlling for
brain pH and fluphenazine equivalents; and for the OFC samples,
we used fluphenazine equivalents as a covariate.

In Silico Characterization of Significant Networks

We interpreted the biology of significant subnetworks with
MetaCore (GeneGo; http://www.genego.com). GeneGO provides
gene ontologies as GeneGO Pathways Maps and Network Pro-
cesses manually constructed from literature review. There are de-
fined as: 1) GeneGO Pathways summaries of established, noncon-
tradictory state-of-the-art knowledge on the major functional
categories of human metabolism and cell signaling; and 2) Net-
works Processes descriptive of a biological function but containing
more information than a Pathway Map and possibly having newer
published results on them. Enrichment of subnetwork genes in
these biological categories is calculated with hypergeometric dis-
tribution statistics as has been described elsewhere (29). For all
analyses in GeneGO, we used the intersection between the PPIN
and the three GWAS dataset genes as a background to account for
biases in PPIN gene annotation. This reference list had 7924 genes,
of which 3375 could be mapped to GeneGO Pathways and 7917
could be mapped to GeneGO Processes. In addition we compiled
genes associated with mouse phenotypes by parsing the files pro-
vided by the Mammalian Phenotype Ontology database (30).
Genes localized in the human postsynaptic density (hPSD) were
obtained from the supplementary material of Bayes et al. (31). En-
richment of genes for membership of the Mammalian Pheno-
type Ontology, and the hPSD categories were calculated with
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