Journal of Catalysis 272 (2010) 109-120

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

The total oxidation of propane over supported Cu and Ce oxides: A comparison of single and binary metal oxides

Philippe M. Heynderickx^a, Joris W. Thybaut^{a,*}, Hilde Poelman^a, Dirk Poelman^b, Guy B. Marin^a

^a Laboratory for Chemical Technology, Department of Chemical Engineering, Ghent University, Krijgslaan 281 (S5), Ghent B-9000, Belgium ^b Department of Solid State Sciences, LumiLab, Ghent University, Krijgslaan 281 (S1), Ghent B-9000, Belgium

ARTICLE INFO

Article history: Received 21 December 2009 Revised 2 March 2010 Accepted 5 March 2010 Available online 20 April 2010

Keywords: Copper Ceria Total oxidation Propane Synergy Turnover frequency

1. Introduction

Nowadays, hydrocarbon emissions from both stationary and non-stationary sources are subjected to strict legislation. Catalytic oxidation offers the advantage that volatile organic component (VOC) can be removed from effluent streams with low VOC concentration at relative low temperatures [1]. Metal oxide catalysts offer a range of technical and commercial advantages that make them a viable alternative to noble metals. Long lifetime, poisoning and masking tolerance, capability of regeneration, availability in a large variety of metal oxide compositions, shapes and sizes, and low price lay the foundation for successful applications [2].

Cupric oxide is known to give highly active catalysts in total oxidation reactions [3–5]. The catalytic properties of the supported cupric oxide-based catalysts are enhanced by the addition of ceria [6,7]. The effect of the preparation method of Cu- and Ce-based catalytic systems on the activity has been intensively studied [8,9]. Nevertheless, up to now, no systematic investigation including catalytic activity and kinetics has been performed. The present paper applies inductively coupled plasma (ICP), Brunauer–Emmett–Teller specific surface area (BET), temperature-programmed desorption (TPD) and X-ray diffraction (XRD) in order to characterize three Cu- and Ce-based catalysts, prepared by the wet impregnation technique. Next to these physical characterizations, pulse

ABSTRACT

The total oxidation of propane is studied by means of steady-state experiments over a set of Cu- and Cebased catalysts at a propane inlet partial pressure of 0.6 kPa, an oxygen partial pressure of 3.5 kPa and temperatures from 595 to 648 K. The catalysts were characterized by inductively coupled plasma (ICP), Brunauer–Emmett–Teller specific surface area (BET), temperature-programmed desorption (TPD), Xray diffraction (XRD), pulse reduction–reoxidation, and H₂- and C₃H₈-temperature-programmed reduction (TPR). A synergistic effect between cupric oxide, CuO, and ceria, CeO₂, is observed using a Mars– van Krevelen model to describe the kinetic data: the activation energies for reduction and reoxidation, obtained on the binary metal oxide catalyst with both cupric oxide and ceria, are 20 kJ mol⁻¹ lower than those obtained on the single Cu- or Ce-based catalysts. The corresponding turnover frequencies are the highest.

© 2010 Elsevier Inc. All rights reserved.

JOURNAL OF CATALYSIS

reduction–reoxidation experiments, H_{2} - and $C_{3}H_{8}$ -temperatureprogrammed reduction (TPR) experiments and catalytic steadystate experiments in propane total oxidation are performed to relate physical, catalytic and kinetic properties.

2. Procedures

2.1. Catalysts

Three commercial catalysts are used, see Table 1: a CuO–CeO₂/ γ -Al₂O₃ catalyst synthesized by impregnation [10,11] with precursors Cu(NO₃)₂ and Ce(NO₃)₄ on a γ -Al₂O₃ support, denoted as Cu-CeO. Catalyst CuO is obtained by impregnation of θ -Al₂O₃ with Cu(NO₃)₂. Further, a catalyst with pure ceria, denoted as CeO, is obtained by impregnation of a γ -Al₂O₃ support, with a lower surface area than the latter, with Ce(NO₃)₄.

2.2. Catalyst characterization

The bulk chemical composition of the tested catalysts was determined by means of inductively coupled plasma atomic emission spectrometry (ICP-AES) (IRIS Advantage system, Thermo Jarrell Ash). N₂ physisorption at 77 K is applied to determine the BET specific surface area using a Gemini V (Micromeritics) automated system. BET values with their 95% confidence intervals were obtained by regression of the experimental data in the range $0.05 < p/p^0 < 0.30$ with the linear BET equation [12]. The catalyst's

E-mail address: Joris.Thybaut@UGent.be (J.W. Thybaut).

^{0021-9517/\$ -} see front matter © 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jcat.2010.03.006

Nomenclature

Roman symbols	Greek s	Greek symbols	
$a_{\beta^*,i}$ constant in Eq. (1) (mol s ⁻¹)	αs	BET specific surface area $(m_{cat}^2 g_{cat}^{-1})$	
A constant in Eq. (5) $(mol_{C_3H_8} mol_{C_3H_8,0}^{-1})$	β	half-peak width, used in Eqs. (S-2) to (S-4) (-)	
A preexponential factor, used in Eq. (2) (s ⁻¹)	β^*	heating rate (K s^{-1})	
A_i surface area of the peak of component <i>i</i> (V s)	r 8	lattice distortion parameter (mm m^{-1})	
B constant in Eq. (5) $(mol_{C_3H_8,0} kg_{cat}^{-1}s^{-1})$	3	porosity $(m^3 m^{-3})$	
C_i concentration of adsorbed moles for component <i>i</i>	θ	diffraction angle, used in Eqs. (S-2) to (S-4) (rad)	
$(\text{mol}_i \text{ kg}_{cat}^{-1})$	$\hat{\theta}$	fraction of active sites (–)	
C_0 oxygen storage capacity (mol ₀ kg _{cat})	λ	X-ray wavelength (m)	
C_t total concentration of active sites (mol kg _{cat})	Λ	TCD outlet signal, corrected for blank experiment	
d_i calibration factor for component <i>i</i> (V s mol ⁻¹)		(mol s^{-1})	
D dispersion (mol mol ⁻¹)	ρ	density (kg m ^{-3})	
E activation energy (kJ mol ⁻¹)	σ	standard deviation (dep.)	
F_i molar flow of component $i \pmod{i s^{-1}}$	$\hat{\Omega}$	cross-section (m ²)	
h Planck constant (J s)			
$k_{\text{app},0}$ initial apparent rate coefficient, see Eq. (7) (mol _{C₃H₈}	Subscripts		
$kg_{cat}^{-1} s^{-1} kPa^{-n_{C_3H_8} - n_{O_2}}$	app	apparent	
k_B Boltzmann constant ($J K^{-1}$)	b	bed	
$k_{C_3H_8}$ reduction rate coefficient, see Eq. (S-13) (mol_{C_3H_8})	cat	catalyst	
$kg_{cat}^{-1} kPa^{-1}$)	i	component <i>i</i>	
k_{O_2} reoxidation rate coefficient, see Eq. (S-14) (mol_{O_2})	0*	oxidized site	
$kg_{cat}^{-1} s^{-1} kPa^{-1}$	р	particle	
K shape factor, used in Eqs. (S-2) and (S-4) (–)	0	initial, inlet	
L average particle size (nm)	*	reduced site	
M molar mass (kg mol^{-1})			
<i>n</i> reaction order (–)	Superscripts		
n_i number of carbon atoms in component $i(-)$	0	standard	
Δn change in number of moles (–)	*	lumped	
<i>N</i> _C number of carbon containing components (–)	-	average	
p partial pressure (kPa)	\neq	transition state	
$N_{\rm P}$ number of peaks in a TPR experiment (-)			
<i>r</i> specific reaction rate $(mol_{C_3H_8} kg_{cat}^{-1} s^{-1})$	Abbrevi	Abbreviations and acronyms	
r_{col} collision rate (mol $m_{cat}^{-1}s^{-1}$)	BET	Brunauer, Emmett and Teller	
R universal gas constant (kJ mol ⁻¹ K ⁻¹)	ICP	inductively coupled plasma	
s sticking probability (–)	MVK	Mars-van Krevelen	
$\Delta^{\neq} S^0$ standard activation entropy (J mol ⁻¹ K ⁻¹)	OSC	oxygen storage capacity	
$\Delta_r S^0$ standard reaction entropy (J mol ⁻¹ K ⁻¹)	TCD	thermal conductivity detector	
<i>S</i> ₀ initial molar amount of reducible substance (mol)	TOF	turnover frequency	
T temperature (K)	TPD	temperature-programmed desorption	
TOF_0 initial turnover frequency (mol _{C₃H₈} mol ₀ ⁻¹ s ⁻¹)	TPR	temperature-programmed reduction	
W _{cat} catalyst mass (kg _{cat})	VOC	volatile organic component	
$X_{C_3H_8}$ propane conversion (mol _{C_3H_8} mol _{C_3H_8,0})	XRD	X-ray diffraction	
y mass percentage $(kg kg^{-1})$		-	

oxygen storage capacity (OSC), C_{o} , is determined by pulse chemisorption experiments using a Micromeritics AutoChem 2920. Temperature-programmed desorption (TPD) analysis has been performed in a Micromeritics AutoChem 2920. Sorptive molecules are carbon dioxide, carbon monoxide and oxygen. Carbon dioxide was used to measure the basicity of the catalysts. Propane and oxygen are used as probe because they are reactants [13].

Crystallographic analyses for the tested catalysts were performed by means of X-ray diffraction (XRD) measurements in θ - 2θ mode using a Bruker-AXS D8 Discover apparatus with lynx eye detector covering 3° and 192 channels over the range 15–85° with a step of 0.04°. For evaluations of the average particle size, (*L*), and the lattice distortion, (ε), the Scherrer equation [14] and the Williamson–Hall equation [15] were applied on XRD experimental data, with correction for the instrumental width using a LaB₆ measurement. Next to the three catalysts, as received, structural characterization on six additionally treated samples is performed: all catalysts are reduced up to 923 K under a flow of 0.05 mol mol⁻¹ H₂ in Ar and a total molar flow rate of 4.5 ×

 10^{-5} mol s⁻¹ at 10 K min⁻¹. CuCeO is additionally reduced up to 623 and 1323 K. Finally, CuCeO is examined, which has been extensively used during 6000 h in propane total oxidation conditions [16]. Table 3 lists all tested catalysts with the corresponding reduction treatment.

Experimental details of the characterization techniques can be found in Supplementary content.

The determination of the particle porosity and the particle density is described in Supplementary content, see Sections S.8 and S.9.

2.3. Temperature-programmed reduction

H₂-TPR experiments are performed at heating rates of 2.5, 5.0, 7.5, 10.0, 15.0, 20.0 and 25.0 K min⁻¹ up to 973 K under a flow of 0.05 mol mol⁻¹ H₂ in Ar using 100 mg of catalyst material and a total molar flow rate of 4.5×10^{-5} mol s⁻¹. H₂-TPR experiments on the support material are performed at a heating rate of 10 K min⁻¹.

Download English Version:

https://daneshyari.com/en/article/62299

Download Persian Version:

https://daneshyari.com/article/62299

Daneshyari.com